Emmy Noether: Mathematicain Trailblazer (Conclusion)




Third epoch (1927–1935): Hypercomplex numbers and representation theory
Much work on hypercomplex numbers and group representations was carried out in the nineteenth and early twentieth centuries, but remained disparate. Noether united these results and gave the first general representation theory of groups and algebras.
Briefly, Noether subsumed the structure theory of associative algebras and the representation theory of groups into a single arithmetic theory of modules and ideals in rings satisfying ascending chain conditions. This single work by Noether was of fundamental importance for the development of modern algebra.
Third epoch (1927–1935): Noncommutative algebra
Noether also was responsible for a number of other advances in the field of algebra. With Emil Artin, Richard Brauer, and Helmut Hasse, she founded the theory of central simple algebras.
A paper by Noether, Helmut Hasse, and Richard Brauer pertains to division algebras, which are algebraic systems in which division is possible. They proved two important theorems: a local-global theorem stating that if a finite-dimensional central division algebra over a number field splits locally everywhere then it splits globally (so is trivial), and from this, deduced their Hauptsatz ("main theorem"):
“Every finite dimensional central division algebra over an algebraic number field F splits over a cyclic cyclotomic extension.”
These theorems allow one to classify all finite-dimensional central division algebras over a given number field. A subsequent paper by Noether showed, as a special case of a more general theorem, that all maximal subfields of a division algebra D are splitting fields.  This paper also contains the Skolem–Noether theorem which states that any two embeddings of an extension of a field k into a finite-dimensional central simple algebra over k, are conjugate. The Brauer–Noether theorem gives a characterization of the splitting fields of central division algebra over a field.
Assessment, recognition, and memorials
Noether's work continues to be relevant for the development of theoretical physics and mathematics and she is consistently ranked as one of the greatest mathematicians of the twentieth century. In his obituary, fellow algebraist BL van der Waerden says that her mathematical originality was "absolute beyond comparison", and Hermann Weyl said that Noether "changed the face of algebra by her work".  During her lifetime and even until today, Noether has been characterized as the greatest woman mathematician in recorded history by mathematicians such as Pavel Alexandrov, Hermann Weyl, and Jean Dieudonné.
In a letter to The New York Times, Albert Einstein wrote:
In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began. In the realm of algebra, in which the most gifted mathematicians have been busy for centuries, she discovered methods which have proved of enormous importance in the development of the present-day younger generation of mathematicians.
On 2 January 1935, a few months before her death, mathematician Norbert Wiener wrote that
Miss Noether is ... the greatest woman mathematician who has ever lived; and the greatest woman scientist of any sort now living, and a scholar at least on the plane of Madame Curie.
At an exhibition at the 1964 World's Fair devoted to Modern Mathematicians, Noether was the only woman represented among the notable mathematicians of the modern world.
Noether has been honored in several memorials,
The Association for Women in Mathematics holds a Noether Lecture to honor women in mathematics every year; in its 2005 pamphlet for the event, the Association characterizes Noether as "one of the great mathematicians of her time, someone who worked and struggled for what she loved and believed in. Her life and work remain a tremendous inspiration".
Consistent with her dedication to her students, the University of Siegen houses its mathematics and physics departments in buildings on the Emmy Noether Campus.
The German Research Foundation (Deutsche Forschungsgemeinschaft) operates the Emmy Noether Programme, providing funding to early-career researchers to rapidly qualify for a leading position in science and research by leading an independent junior research group.
A Street in her hometown, Erlangen, has been named after Emmy Noether and her father, Max Noether.
The successor to the secondary school she attended in Erlangen has been renamed as the Emmy Noether School.
A series of high school workshops and competitions are held in her honor in May of each year since 2001, originally hosted by a subsequent woman mathematics Privatdozent of the University of Göttingen.
 Perimeter Institute for Theoretical Physics annually awards Emmy Noether Visiting Fellowships to outstanding female theoretical physicists. Perimeter Institute is also home to the Emmy Noether Council, a group of volunteers made up of international community, corporate and philanthropic leaders work together to increase the number of women in physics and mathematical physics at Perimeter Institute.
The Emmy Noether Mathematics Institute in Algebra, Geometry and Function Theory in the Department of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan, Israel was jointly founded in 1992 by the university, the German government and the Minerva Foundation with the aim to stimulate research in the above fields and to encourage collaborations with Germany. Its main topics are Algebraic Geometry, Group theory and Complex Function Theory. Its activities include local research projects, conferences, short-term visitors, post-doc fellowships, and the Emmy Noether lectures (an annual series of distinguished lectures). ENI is a member of ERCOM: "European Research Centers of Mathematics".
In 2013, The European Physical Society established the Emmy Noether Distinction for Women in Physics.  Winners have included Dr Catalina Curceanu, Prof Sibylle Günter and Prof Anne L'Huillier.

In fiction, Emmy Nutter, the physics professor in "The God Patent" by Ransom Stephens, is based on Emmy Noether.
Farther from home,
The crater Nöther on the far side of the Moon is named after her.
The minor planet 7001 Noether is named for Emmy Noether.
Google put a memorial doodle created by Google artist Sophie Diao on Google's homepage in many countries on 23 March 2015 to celebrate Emmy Noether's 133rd birthday.

Comments