Volcanoes
The shield volcano Olympus Mons (Mount Olympus) is an extinct volcano in the vast upland region Tharsis, which contains several other large volcanoes. The edifice is over 600 km (370 mi) wide. Because the mountain is so large, with complex structure at its edges, allocating a height to it is difficult. Its local relief, from the foot of the cliffs which form its northwest margin to its peak, is over 21 km (13 mi), a little over twice the height of Mauna Kea as measured from its base on the ocean floor. The total elevation change from the plains of Amazonis Planitia, over 1,000 km (620 mi) to the northwest, to the summit approaches 26 km (16 mi), roughly three times the height of Mount Everest, which in comparison stands at just over 8.8 kilometers (5.5 mi). Consequently, Olympus Mons is either the tallest or second-tallest mountain in the Solar System; the only known mountain which might be taller is the Rheasilvia peak on the asteroid Vesta, at 20–25 km (12–16 mi).
Impact topography
The dichotomy of Martian topography is striking: northern plains flattened by lava flows contrast with the southern highlands, pitted and cratered by ancient impacts. It is possible that, four billion years ago, the Northern Hemisphere of Mars was struck by an object one-tenth to two-thirds the size of Earth's Moon. If this is the case, the Northern Hemisphere of Mars would be the site of an impact crater 10,600 by 8,500 kilometers (6,600 by 5,300 mi) in size, or roughly the area of Europe, Asia, and Australia combined, surpassing Utopia Planitia and the Moon's South Pole–Aitken basin as the largest impact crater in the Solar System.
Mars is scarred by a number of impact craters: a total of 43,000 craters with a diameter of 5 kilometers (3.1 mi) or greater have been found. The largest exposed crater is Hellas, which is 2,300 kilometers (1,400 mi) wide and 7,000 meters (23,000 ft) deep, and is a light albedo feature clearly visible from Earth. There are other notable impact features, such as Argyre, which is around 1,800 kilometers (1,100 mi) in diameter, and Isidis, which is around 1,500 kilometers (930 mi) in diameter. Due to the smaller mass and size of Mars, the probability of an object colliding with the planet is about half that of Earth. Mars is located closer to the asteroid belt, so it has an increased chance of being struck by materials from that source. Mars is more likely to be struck by short-period comets, i.e., those that lie within the orbit of Jupiter.
Martian craters can have a morphology that suggests the ground became wet after the meteor impacted.
Tectonic sites
The large canyon, Valles Marineris (Latin for "Mariner Valleys", also known as Agathodaemon in the old canal maps), has a length of 4,000 kilometers (2,500 mi) and a depth of up to 7 kilometers (4.3 mi). The length of Valles Marineris is equivalent to the length of Europe and extends across one-fifth the circumference of Mars. By comparison, the Grand Canyon on Earth is only 446 kilometers (277 mi) long and nearly 2 kilometers (1.2 mi) deep. Valles Marineris was formed due to the swelling of the Tharsis area, which caused the crust in the area of Valles Marineris to collapse. In 2012, it was proposed that Valles Marineris is not just a graben, but a plate boundary where 150 kilometers (93 mi) of transverse motion has occurred, making Mars a planet with possibly a two-tectonic plate arrangement.
Holes
Images from the Thermal Emission Imaging System (THEMIS) aboard NASA's Mars Odyssey orbiter have revealed seven possible cave entrances on the flanks of the volcano Arsia Mons. The caves, named after loved ones of their discoverers, are collectively known as the "seven sisters". Cave entrances measure from 100 to 252 meters (328 to 827 ft) wide and they are estimated to be at least 73 to 96 meters (240 to 315 ft) deep. Because light does not reach the floor of most of the caves, it is possible that they extend much deeper than these lower estimates and widen below the surface. "Dena" is the only exception; its floor is visible and was measured to be 130 metres (430 ft) deep. The interiors of these caverns may be protected from micrometeoroids, UV radiation, solar flares and high energy particles that bombard the planet's surface.
Atmosphere
Mars lost its magnetosphere 4 billion years ago, possibly because of numerous asteroid strikes, so the solar wind interacts directly with the Martian ionosphere, lowering the atmospheric density by stripping away atoms from the outer layer. Both Mars Global Surveyor and Mars Express have detected ionized atmospheric particles trailing off into space behind Mars, and this atmospheric loss is being studied by the MAVEN orbiter. Compared to Earth, the atmosphere of Mars is quite rarefied. Atmospheric pressure on the surface today ranges from a low of 30 Pa (0.0044 psi) on Olympus Mons to over 1,155 Pa (0.1675 psi) in Hellas Planitia, with a mean pressure at the surface level of 600 Pa (0.087 psi). The highest atmospheric density on Mars is equal to that found 35 kilometers (22 mi) above Earth's surface. The resulting mean surface pressure is only 0.6% of that of Earth 101.3 kPa (14.69 psi). The scale height of the atmosphere is about 10.8 kilometers (6.7 mi), which is higher than Earth's 6 kilometers (3.7 mi), because the surface gravity of Mars is only about 38% of Earth's.
The atmosphere of Mars consists of about 96% carbon dioxide, 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. The atmosphere is quite dusty, containing particulates about 1.5 µm in diameter which give the Martian sky a tawny color when seen from the surface. It may take on a pink hue due to iron oxide particles suspended in it. The concentration of methane in the Martian atmosphere fluctuates from about 0.24 ppb during the northern winter to about 0.65 ppb during the summer. Estimates of its lifetime range from 0.6 to 4 years, so its presence indicates that an active source of the gas must be present. Methane could be produced by non-biological process such as serpentinization involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars, or by Martian life.
Compared to Earth, its higher concentration of atmospheric CO2 and lower surface pressure may be why sound is attenuated more on Mars, where natural sources are rare apart from the wind. Using acoustic recordings collected by the Perseverance rover, researchers concluded that the speed of sound there is approximately 240 m/s for frequencies below 240 Hz, and 250 m/s for those above.
Auroras have been detected on Mars. Because Mars lacks a global magnetic field, the types and distribution of auroras there differ from those on Earth; rather than being mostly restricted to polar regions, a Martian aurora can encompass the planet. In September 2017, NASA reported radiation levels on the surface of the planet Mars were temporarily doubled, and were associated with an aurora 25 times brighter than any observed earlier, due to a massive, and unexpected, solar storm in the middle of the month.
Climate
Of all the planets in the Solar System, the seasons of Mars are the most Earth-like, due to the similar tilts of the two planets' rotational axes. The lengths of the Martian seasons are about twice those of Earth's because Mars's greater distance from the Sun leads to the Martian year being about two Earth years long. Martian surface temperatures vary from lows of about −110 °C (−166 °F) to highs of up to 35 °C (95 °F) in equatorial summer. The wide range in temperatures is due to the thin atmosphere which cannot store much solar heat, the low atmospheric pressure, and the low thermal inertia of Martian soil. The planet is 1.52 times as far from the Sun as Earth, resulting in just 43% of the amount of sunlight.
If Mars had an Earth-like orbit, its seasons would be similar to Earth's because its axial tilt is similar to Earth's. The comparatively large eccentricity of the Martian orbit has a significant effect. Mars is near perihelion when it is summer in the Southern Hemisphere and winter in the north, and near aphelion when it is winter in the Southern Hemisphere and summer in the north. As a result, the seasons in the Southern Hemisphere are more extreme and the seasons in the northern are milder than would otherwise be the case. The summer temperatures in the south can be warmer than the equivalent summer temperatures in the north by up to 30 °C (54 °F).
Mars has the largest dust storms in the Solar System, reaching speeds of over 160 km/h (100 mph). These can vary from a storm over a small area, to gigantic storms that cover the entire planet. They tend to occur when Mars is closest to the Sun, and have been shown to increase the global temperature.
Dust storms on Mars
Orbit and rotation
Mars's average distance from the Sun is roughly 230 million km (143 million mi), and its orbital period is 687 (Earth) days. The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours.
The axial tilt of Mars is 25.19° relative to its orbital plane, which is similar to the axial tilt of Earth. As a result, Mars has seasons like Earth, though on Mars they are nearly twice as long because its orbital period is that much longer. In the present day epoch, the orientation of the north pole of Mars is close to the star Deneb.
Mars has a relatively pronounced orbital eccentricity of about 0.09; of the seven other planets in the Solar System, only Mercury has a larger orbital eccentricity. It is known that in the past, Mars has had a much more circular orbit. At one point, 1.35 million Earth years ago, Mars had an eccentricity of roughly 0.002, much less than that of Earth today. Mars's cycle of eccentricity is 96,000 Earth years compared to Earth's cycle of 100,000 years.
Habitability and search for life
During the late nineteenth century, it was widely accepted in the astronomical community that Mars had life-supporting qualities, including oxygen and water. However, in 1894 W. W. Campbell at Lick Observatory observed the planet and found that "if water vapor or oxygen occur in the atmosphere of Mars it is in quantities too small to be detected by spectroscopes then available". That observation contradicted many of the measurements of the time and was not widely accepted. Campbell and V. M. Slipher repeated the study in 1909 using better instruments, but with the same results. It wasn't until the findings were confirmed by W. S. Adams in 1925 that the myth of the Earth-like habitability of Mars was finally broken. However, even in the 1960s, articles were published on Martian biology, putting aside explanations other than life for the seasonal changes on Mars. Detailed scenarios for the metabolism and chemical cycles for a functional ecosystem were being published as late as 1962.
The current understanding of planetary habitability – the ability of a world to develop environmental conditions favorable to the emergence of life – favors planets that have liquid water on their surface. Most often this requires the orbit of a planet to lie within the habitable zone, which for the Sun is estimated to extend from within the orbit of Earth to about that of Mars. During perihelion, Mars dips inside this region, but Mars's thin (low-pressure) atmosphere prevents liquid water from existing over large regions for extended periods. The past flow of liquid water demonstrates the planet's potential for habitability. Recent evidence has suggested that any water on the Martian surface may have been too salty and acidic to support regular terrestrial life.
The lack of a magnetosphere and the extremely thin atmosphere of Mars are a challenge: the planet has little heat transfer across its surface, poor insulation against bombardment of the solar wind and insufficient atmospheric pressure to retain water in a liquid form (water instead sublimes to a gaseous state). Mars is nearly, or perhaps totally, geologically dead; the end of volcanic activity has apparently stopped the recycling of chemicals and minerals between the surface and interior of the planet.
Scoop of Mars soil by Curiosity, October 2012
In situ investigations have been performed on Mars by the Viking landers, Spirit and Opportunity rovers, Phoenix lander, and Curiosity rover. Evidence suggests that the planet was once significantly more habitable than it is today, but whether living organisms ever existed there remains unknown. The Viking probes of the mid-1970s carried experiments designed to detect microorganisms in Martian soil at their respective landing sites and had positive results, including a temporary increase of CO2 production on exposure to water and nutrients. This sign of life was later disputed by scientists, resulting in a continuing debate, with NASA scientist Gilbert Levin asserting that Viking may have found life. Tests conducted by the Phoenix Mars lander have shown that the soil has an alkaline pH and it contains magnesium, sodium, potassium and chloride. The soil nutrients may be able to support life, but life would still have to be shielded from the intense ultraviolet light. A 2014 analysis of Martian meteorite EETA79001 found chlorate, perchlorate, and nitrate ions in sufficiently high concentration to suggest that they are widespread on Mars. UV and X-ray radiation would turn chlorate and perchlorate ions into other, highly reactive oxychlorines, indicating that any organic molecules would have to be buried under the surface to survive.
Scientists have proposed that carbonate globules found in meteorite ALH84001, which is thought to have originated from Mars, could be fossilized microbes extant on Mars when the meteorite was blasted from the Martian surface by a meteor strike some 15 million years ago. This proposal has been met with skepticism, and an exclusively inorganic origin for the shapes has been proposed. Small quantities of methane and formaldehyde detected by Mars orbiters are both claimed to be possible evidence for life, as these chemical compounds would quickly break down in the Martian atmosphere. Alternatively, these compounds may instead be replenished by volcanic or other geological means, such as serpentinite. Impact glass, formed by the impact of meteors, which on Earth can preserve signs of life, has also been found on the surface of the impact craters on Mars. Likewise, the glass in impact craters on Mars could have preserved signs of life, if life existed at the site.
Moons
Mars has two relatively small (compared to Earth's) natural moons, Phobos (about 22 kilometers (14 mi) in diameter) and Deimos (about 12 kilometers (7.5 mi) in diameter), which orbit close to the planet. Asteroid capture is a long-favored theory, but their origin remains uncertain. Both satellites were discovered in 1877 by Asaph Hall; they are named after the characters Phobos (panic/fear) and Deimos (terror/dread), who, in Greek mythology, accompanied their father Ares, god of war, into battle. Mars was the Roman equivalent to Ares. In modern Greek, the planet retains its ancient name Ares (Aris: Άρης).
From the surface of Mars, the motions of Phobos and Deimos appear different from that of the Moon. Phobos rises in the west, sets in the east, and rises again in just 11 hours. Deimos, being only just outside synchronous orbit – where the orbital period would match the planet's period of rotation – rises as expected in the east but slowly.
Because the orbit of Phobos is below synchronous altitude, the tidal forces from the planet Mars are gradually lowering its orbit. In about 50 million years, it could either crash into Mars's surface or break up into a ring structure around the planet.
The origin of the two moons is not well understood. Their low albedo and carbonaceous chondrite composition have been regarded as similar to asteroids, supporting the capture theory. The unstable orbit of Phobos would seem to point towards a relatively recent capture. But both have circular orbits, near the equator, which is unusual for captured objects and the required capture dynamics are complex. Accretion early in the history of Mars is plausible, but would not account for a composition resembling asteroids rather than Mars itself, if that is confirmed.
A third possibility is the involvement of a third body or a type of impact disruption. More-recent lines of evidence for Phobos having a highly porous interior, and suggesting a composition containing mainly phyllosilicates and other minerals known from Mars, point toward an origin of Phobos from material ejected by an impact on Mars that reaccreted in Martian orbit, similar to the prevailing theory for the origin of Earth's moon. Although the visible and near-infrared (VNIR) spectra of the moons of Mars resemble those of outer-belt asteroids, the thermal infrared spectra of Phobos are reported to be inconsistent with chondrites of any class. It is also possible that Phobos and Deimos are fragments of an older moon, formed by debris from a large impact on Mars, and then destroyed by a more recent impact upon itself.
Mars may have moons smaller than 50 to 100 metres (160 to 330 ft) in diameter, and a dust ring is predicted to exist between Phobos and Deimos.
Exploration
Dozens of crewless spacecraft, including orbiters, landers, and rovers, have been sent to Mars by the Soviet Union, the United States, Europe, India, the United Arab Emirates, and China to study the planet's surface, climate, and geology. NASA's Mariner 4 was the first spacecraft to visit Mars; launched on 28 November 1964, it made its closest approach to the planet on 15 July 1965. Mariner 4 detected the weak Martian radiation belt, measured at about 0.1% that of Earth, and captured the first images of another planet from deep space.
Once spacecraft visited the planet during NASA's Mariner missions in the 1960s and 1970s, many previous concepts of Mars were radically broken. After the results of the Viking life-detection experiments, the hypothesis of a hostile, dead planet was generally accepted. The data from Mariner 9 and Viking allowed better maps of Mars to be made, and the Mars Global Surveyor mission, which launched in 1996 and operated until late 2006, produced complete, extremely detailed maps of the Martian topography, magnetic field and surface minerals. These maps are available online at websites including Google Mars. Both the Mars Reconnaissance Orbiter and Mars Express continued exploring with new instruments and supporting lander missions. NASA provides two online tools: Mars Trek, which provides visualizations of the planet using data from 50 years of exploration, and Experience Curiosity, which simulates traveling on Mars in 3-D with Curiosity.
As of 2021, Mars is host to fourteen functioning spacecraft. Eight are in orbit: 2001 Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, MAVEN, Mars Orbiter Mission, ExoMars Trace Gas Orbiter, the Hope orbiter, and the Tianwen-1 orbiter. Another six are on the surface: the InSight lander, the Mars Science Laboratory Curiosity rover, the Perseverance rover, the Ingenuity helicopter, the Tianwen-1 lander, and the Zhurong rover.
The Rosalind Franklin rover mission, designed to search for evidence of past life, was intended to be launched in 2018 but has been repeatedly delayed, with a launch date pushed to 2024 at the earliest. The current concept for the Mars sample-return mission would launch in 2026 and feature hardware built by NASA and ESA. Several plans for a human mission to Mars have been proposed throughout the 20th and 21st centuries, but none have come to fruition. The NASA Authorization Act of 2017 directed NASA to study the feasibility of a crewed Mars mission in the early 2030s; the resulting report eventually concluded that this would be unfeasible. In addition, in 2021, China was planning to send a crewed Mars mission in 2033.
Astronomy on Mars
With the presence of various orbiters, landers, and rovers, it is possible to practice astronomy from Mars. Although Mars's moon Phobos appears about one-third the angular diameter of the full moon on Earth, Deimos appears more or less star-like, looking only slightly brighter than Venus does from Earth.
Various phenomena seen from Earth have also been observed from Mars, such as meteors and auroras. The apparent sizes of the moons Phobos and Deimos are sufficiently smaller than that of the Sun; thus, their partial "eclipses" of the Sun are best considered transits. Transits of Mercury and Venus have been observed from Mars. A transit of Earth will be seen from Mars on 10 November 2084.
Viewing
The mean apparent magnitude of Mars is +0.71 with a standard deviation of 1.05. Because the orbit of Mars is eccentric, the magnitude at opposition from the Sun can range from about −3.0 to −1.4. The minimum brightness is magnitude +1.86 when the planet is near aphelion and in conjunction with the Sun. At its brightest, Mars (along with Jupiter) is second only to Venus in luminosity. Mars usually appears distinctly yellow, orange, or red. When farthest away from Earth, it is more than seven times farther away than when it is closest. Mars is usually close enough for particularly good viewing once or twice at 15-year or 17-year intervals. As Mars approaches opposition, it begins a period of retrograde motion, which means it will appear to move backwards in a looping curve with respect to the background stars. This retrograde motion lasts for about 72 days, and Mars reaches its peak luminosity in the middle of this interval.
The point at which Mars's geocentric longitude is 180° different from the Sun's is known as opposition, which is near the time of closest approach to Earth. The time of opposition can occur as much as 8.5 days away from the closest approach. The distance at close approach varies between about 54 and 103 million km (34 and 64 million mi) due to the planets' elliptical orbits, which causes comparable variation in angular size. The most recent Mars opposition occurred on 13 October 2020, at a distance of about 63 million km (39 million mi). The average time between the successive oppositions of Mars, its synodic period, is 780 days; but the number of days between the dates of successive oppositions can range from 764 to 812.
Mars comes into opposition from Earth every 2.1 years. The planets come into opposition near Mars's perihelion in 2003, 2018 and 2035, with the 2020 and 2033 events being particularly close to perihelic opposition. Mars made its closest approach to Earth and maximum apparent brightness in nearly 60,000 years, 55,758,006 km (0.37271925 AU; 34,646,419 mi), magnitude −2.88, on 27 August 2003, at 09:51:13 UTC. This occurred when Mars was one day from opposition and about three days from its perihelion, making it particularly easy to see from Earth. The last time it came so close is estimated to have been on 12 September 57,617 BC, the next time being in 2287. This record approach was only slightly closer than other recent close approaches.
Optical ground-based telescopes are typically limited to resolving features about 300 kilometers (190 mi) across when Earth and Mars are closest because of Earth's atmosphere.
In culture
Mars is named after the Roman god of war. This association between Mars and war dates back at least to Babylonian astronomy, in which the planet was named for the god Nergal, deity of war and destruction. It persisted into modern times, as exemplified by Gustav Holst's orchestral suite The Planets, whose famous first movement labels Mars "the bringer of war". The planet's symbol, a circle with a spear pointing out to the upper right, is also used as a symbol for the male gender. The symbol dates from at latest the 11th century, though a possible predecessor has been found in the Greek Oxyrhynchus Papyri.
The idea that Mars was populated by intelligent Martians became widespread in the late 19th century. Schiaparelli's "canali" observations combined with Percival Lowell's books on the subject put forward the standard notion of a planet that was a drying, cooling, dying world with ancient civilizations constructing irrigation works. Many other observations and proclamations by notable personalities added to what has been termed "Mars Fever". High-resolution mapping of the surface of Mars revealed no artifacts of habitation, but pseudoscientific speculation about intelligent life on Mars still continues. Reminiscent of the canali observations, these speculations are based on small scale features perceived in the spacecraft images, such as "pyramids" and the "Face on Mars". In his book Cosmos, planetary astronomer Carl Sagan wrote: "Mars has become a kind of mythic arena onto which we have projected our Earthly hopes and fears."
The depiction of Mars in fiction has been stimulated by its dramatic red color and by nineteenth-century scientific speculations that its surface conditions might support not just life but intelligent life. This gave way to many science fiction stories involving these concepts, such as H. G. Wells' The War of the Worlds, in which Martians seek to escape their dying planet by invading Earth, Ray Bradbury's The Martian Chronicles, in which human explorers accidentally destroy a Martian civilization, as well as Edgar Rice Burroughs' Barsoom series, C. S. Lewis' novel Out of the Silent Planet (1938), and a number of Robert A. Heinlein stories before the mid-sixties. Since then, depictions of Martians have also extended to animation. A comic figure of an intelligent Martian, Marvin the Martian, appeared in Haredevil Hare (1948) as a character in the Looney Tunes animated cartoons of Warner Brothers, and has continued as part of popular culture to the present. After the Mariner and Viking spacecraft had returned pictures of Mars as it really is, a lifeless and canal-less world, these ideas about Mars were abandoned; for many science-fiction authors, the new discoveries initially seemed like a constraint, but eventually the post-Viking knowledge of Mars became itself a source of inspiration for works like Kim Stanley Robinson's Mars trilogy.
Comments
Post a Comment