After core hydrogen exhaustion
The Sun does not have enough mass to explode as a supernova. Instead, when it runs out of hydrogen in the core in approximately 5 billion years, core hydrogen fusion will stop, and there will be nothing to prevent the core from contracting. The release of gravitational potential energy will cause the luminosity of the Sun to increase, ending the main sequence phase and leading the Sun to expand over the next billion years: first into a sub-giant, and then into a red giant. The heating due to gravitational contraction will also lead to hydrogen fusion in a shell just outside the core, where unfused hydrogen remains, contributing to the increased luminosity, which will eventually reach more than 1,000 times its present luminosity. When the Sun enters its red-giant branch (RGB) phase, it will engulf Mercury and (likely) Venus, reaching about 0.75 AU (110 million km; 70 million mi). The Sun will spend around a billion years in the RGB and lose around a third of its mass.
After the red-giant branch, the Sun has approximately 120 million years of active life left, but much happens. First, the core (full of degenerate helium) ignites violently in the helium flash; it is estimated that 6% of the core—itself 40% of the Sun's mass—will be converted into carbon within a matter of minutes through the triple-alpha process. The Sun then shrinks to around 10 times its current size and 50 times the luminosity, with a temperature a little lower than today. It will then have reached the red clump or horizontal branch, but a star of the Sun's metallicity does not evolve blue-ward along the horizontal branch. Instead, it just becomes moderately larger and more luminous over about 100 million years as it continues to react helium in the core.
When the helium is exhausted, the Sun will repeat the expansion it followed when the hydrogen in the core was exhausted. This time, however, it all happens faster, and the Sun becomes larger and more luminous, engulfing Venus if it has not already. This is the asymptotic-giant-branch phase, and the Sun is alternately reacting hydrogen in a shell or helium in a deeper shell. After about 20 million years on the early asymptotic giant branch, the Sun becomes increasingly unstable, with rapid mass loss and thermal pulses that increase the size and luminosity for a few hundred years every 100,000 years or so. The thermal pulses become larger each time, with the later pulses pushing the luminosity to as much as 5,000 times the current level and the radius to over 1 AU (150 million km; 93 million mi).
According to a 2008 model, Earth's orbit will have initially expanded to at most 1.5 AU (220 million km; 140 million mi) due to the Sun's loss of mass as a red giant. However, Earth's orbit will later start shrinking due to tidal forces (and, eventually, drag from the lower chromosphere) so that it is engulfed by the Sun during the tip of the red-giant branch phase, 3.8 and 1 million years after Mercury and Venus have respectively suffered the same fate. Models vary depending on the rate and timing of mass loss. Models that have higher mass loss on the red-giant branch produce smaller, less luminous stars at the tip of the asymptotic giant branch, perhaps only 2,000 times the luminosity and less than 200 times the radius. For the Sun, four thermal pulses are predicted before it completely loses its outer envelope and starts to make a planetary nebula. By the end of that phase—lasting approximately 500,000 years—the Sun will only have about half of its current mass.
The post-asymptotic-giant-branch evolution is even faster. The luminosity stays approximately constant as the temperature increases, with the ejected half of the Sun's mass becoming ionized into a planetary nebula as the exposed core reaches 30,000 K (29,700 °C; 53,500 °F), as if it is in a sort of blue loop. The final naked core, a white dwarf, will have a temperature of over 100,000 K (100,000 °C; 180,000 °F), and contain an estimated 54.05% of the Sun's present-day mass. The planetary nebula will disperse in about 10,000 years, but the white dwarf will survive for trillions of years before fading to a hypothetical black dwarf.
Motion and location
Solar System
Main article: Solar System
The Sun has eight known planets orbiting around it. This includes four terrestrial planets (Mercury, Venus, Earth, and Mars), two gas giants (Jupiter and Saturn), and two ice giants (Uranus and Neptune). The Solar System also has nine bodies generally considered as dwarf planets and some more candidates, an asteroid belt, numerous comets, and a large number of icy bodies which lie beyond the orbit of Neptune. Six of the planets and many smaller bodies also have their own natural satellites: in particular, the satellite systems of Jupiter, Saturn, and Uranus are in some ways like miniature versions of the Sun's system.
The Sun is moved by the gravitational pull of the planets. The center of the Sun is always within 2.2 solar radii of the barycenter. This motion of the Sun is mainly due to Jupiter, Saturn, Uranus, and Neptune. For some periods of several decades, the motion is rather regular, forming a trefoil pattern, whereas between these periods it appears more chaotic. After 179 years (nine times the synodic period of Jupiter and Saturn), the pattern more or less repeats, but rotated by about 24°. The orbits of the inner planets, including of the Earth, are similarly displaced by the same gravitational forces, so the movement of the Sun has little effect on the relative positions of the Earth and the Sun or on solar irradiance on the Earth as a function of time.
Celestial neighborhood
The Solar System is surrounded by the Local Interstellar Cloud, although it is not clear if it is embedded in the Local Interstellar Cloud or if it lies just outside the cloud's edge. Multiple other interstellar clouds also exist in the region within 300 light-years of the Sun, known as the Local Bubble. The latter feature is an hourglass-shaped cavity or super-bubble in the interstellar medium roughly 300 light-years across. The bubble is suffused with high-temperature plasma, suggesting that it may be the product of several recent supernovae.
The Local Bubble is a small super-bubble compared to the neighboring wider Radcliffe Wave and Split linear structures (formerly Gould Belt), each of which are some thousands of light-years in length. All these structures are part of the Orion Arm, which contains most of the stars in the Milky Way that are visible to the unaided eye. The density of all matter in the local neighborhood is 0.097±0.013 M☉·pc−3.
Within ten light-years of the Sun there are relatively few stars, the closest being the triple star system Alpha Centauri, which is about 4.4 light-years away and may be in the Local Bubble's G-Cloud. Alpha Centauri A and B are a closely tied pair of Sun-like stars, whereas the closest star to Earth, the small red dwarf Proxima Centauri, orbits the pair at a distance of 0.2 light-year. In 2016, a potentially habitable exoplanet was found to be orbiting Proxima Centauri, called Proxima Centauri b, the closest confirmed exoplanet to the Sun.[
The next closest known fusors to the Sun are the red dwarfs Barnard's Star (at 5.9 ly), Wolf 359 (7.8 ly), and Lalande 21185 (8.3 ly). The nearest brown dwarfs belong to the binary Luhman 16 system (6.6 ly), and the closest known rogue or free-floating planetary-mass object at less than 10 Jupiter masses is the sub-brown dwarf WISE 0855−0714.
Just beyond at 8.6 ly lies Sirius, the brightest star in Earth's night sky, with roughly twice the Sun's mass, orbited by the closest white dwarf to Earth, Sirius B. Other stars within ten light-years are the binary red-dwarf system Luyten 726-8 (8.7 ly) and the solitary red dwarf Ross 154 (9.7 ly). The closest solitary Sun-like star to the Solar System is Tau Ceti at 11.9 light-years. It has roughly 80% of the Sun's mass but only about half of its luminosity.
Galactic context
The Solar System is located in the Milky Way, a barred spiral galaxy with a diameter of about 100,000 light-years containing more than 100 billion stars. The Sun resides in one of the Milky Way's outer spiral arms, known as the Orion–Cygnus Arm or Local Spur. The Sun lies about 26,660 light-years from the Galactic Centre, and its speed around the center of the Milky Way is about 220 km/s, so that it completes one revolution every 240 million years. This revolution is known as the Solar System's galactic year. The solar apex, the direction of the Sun's path through interstellar space, is near the constellation Hercules in the direction of the current location of the bright star Vega. The plane of the ecliptic lies at an angle of about 60° to the galactic plane.
The Solar System's location in the Milky Way is a factor in the evolutionary history of life on Earth. Its orbit is close to circular, and orbits near the Sun are at roughly the same speed as that of the spiral arms. Therefore, the Sun passes through arms only rarely. Because spiral arms are home to a far larger concentration of supernovae, gravitational instabilities, and radiation that could disrupt the Solar System, this has given Earth long periods of stability for life to evolve. However, the changing position of the Solar System relative to other parts of the Milky Way could explain periodic extinction events on Earth, according to the Shiva hypothesis or related theories, but this remains controversial.
Observational history
Early understanding
The Sun has been an object of veneration in many cultures throughout human history. Humanity's most fundamental understanding of the Sun is as the luminous disk in the sky, whose presence above the horizon causes day and whose absence causes night. In many prehistoric and ancient cultures, the Sun was thought to be a solar deity or other supernatural entity. The Sun has played an important part in many world religions, as described in a later section.
In the early first millennium BC, Babylonian astronomers observed that the Sun's motion along the ecliptic is not uniform, though they did not know why; it is today known that this is due to the movement of Earth in an elliptic orbit around the Sun, with Earth moving faster when it is nearer to the Sun at perihelion and moving slower when it is farther away at aphelion.
One of the first people to offer a scientific or philosophical explanation for the Sun was the Greek philosopher Anaxagoras. He reasoned that it was not the chariot of Helios, but instead a giant flaming ball of metal even larger than the land of the Peloponnesus and that the Moon reflected the light of the Sun. For teaching this heresy, he was imprisoned by the authorities and sentenced to death, though he was later released through the intervention of Pericles. Eratosthenes estimated the distance between Earth and the Sun in the 3rd century BC as "of stadia myriads 400 and 80000", the translation of which is ambiguous, implying either 4,080,000 stadia (755,000 km) or 804,000,000 stadia (148 to 153 million kilometers or 0.99 to 1.02 AU); the latter value is correct to within a few percent. In the 1st century AD, Ptolemy estimated the distance as 1,210 times the radius of Earth, approximately 7.71 million kilometers (0.0515 AU).
The theory that the Sun is the center around which the planets orbit was first proposed by the ancient Greek Aristarchus of Samos in the 3rd century BC, and later adopted by Seleucus of Seleucia (see Heliocentrism). This view was developed in a more detailed mathematical model of a heliocentric system in the 16th century by Nicolaus Copernicus.
Development of scientific understanding
Observations of sunspots were recorded during the Han Dynasty (206 BC–AD 220) by Chinese astronomers, who maintained records of these observations for centuries. Averroes also provided a description of sunspots in the 12th century. The invention of the telescope in the early 17th century permitted detailed observations of sunspots by Thomas Harriot, Galileo Galilei and other astronomers. Galileo posited that sunspots were on the surface of the Sun rather than small objects passing between Earth and the Sun.
Arabic astronomical contributions include Al-Battani's discovery that the direction of the Sun's apogee (the place in the Sun's orbit against the fixed stars where it seems to be moving slowest) is changing. (In modern heliocentric terms, this is caused by a gradual motion of the aphelion of the Earth's orbit). Ibn Yunus observed more than 10,000 entries for the Sun's position for many years using a large astrolabe.
From an observation of a transit of Venus in 1032, the Persian astronomer and polymath Ibn Sina concluded that Venus is closer to Earth than the Sun. In 1672 Giovanni Cassini and Jean Richer determined the distance to Mars and were thereby able to calculate the distance to the Sun.
In 1666, Isaac Newton observed the Sun's light using a prism, and showed that it is made up of light of many colors. In 1800, William Herschel discovered infrared radiation beyond the red part of the solar spectrum. The 19th century saw advancement in spectroscopic studies of the Sun; Joseph von Fraunhofer recorded more than 600 absorption lines in the spectrum, the strongest of which are still often referred to as Fraunhofer lines. In the early years of the modern scientific era, the source of the Sun's energy was a significant puzzle. Lord Kelvin suggested that the Sun is a gradually cooling liquid body that is radiating an internal store of heat. Kelvin and Hermann von Helmholtz then proposed a gravitational contraction mechanism to explain the energy output, but the resulting age estimate was only 20 million years, well short of the time span of at least 300 million years suggested by some geological discoveries of that time. In 1890 Joseph Lockyer, who discovered helium in the solar spectrum, proposed a meteoritic hypothesis for the formation and evolution of the Sun.
Not until 1904 was a documented solution offered. Ernest Rutherford suggested that the Sun's output could be maintained by an internal source of heat, and suggested radioactive decay as the source. However, it would be Albert Einstein who would provide the essential clue to the source of the Sun's energy output with his mass–energy equivalence relation E = mc2. In 1920, Sir Arthur Eddington proposed that the pressures and temperatures at the core of the Sun could produce a nuclear fusion reaction that merged hydrogen (protons) into helium nuclei, resulting in a production of energy from the net change in mass. The preponderance of hydrogen in the Sun was confirmed in 1925 by Cecilia Payne using the ionization theory developed by Meghnad Saha. The theoretical concept of fusion was developed in the 1930s by the astrophysicists Subrahmanyan Chandrasekhar and Hans Bethe. Hans Bethe calculated the details of the two main energy-producing nuclear reactions that power the Sun. In 1957, Margaret Burbidge, Geoffrey Burbidge, William Fowler and Fred Hoyle showed that most of the elements in the universe have been synthesized by nuclear reactions inside stars, some like the Sun.
Solar space missions
The first satellites designed for long term observation of the Sun from interplanetary space were NASA's Pioneers 6, 7, 8 and 9, which were launched between 1959 and 1968. These probes orbited the Sun at a distance similar to that of Earth, and made the first detailed measurements of the solar wind and the solar magnetic field. Pioneer 9 operated for a particularly long time, transmitting data until May 1983.
In the 1970s, two Helios spacecraft and the Skylab Apollo Telescope Mount provided scientists with significant new data on solar wind and the solar corona. The Helios 1 and 2 probes were U.S.–German collaborations that studied the solar wind from an orbit carrying the spacecraft inside Mercury's orbit at perihelion. The Skylab space station, launched by NASA in 1973, included a solar observatory module called the Apollo Telescope Mount that was operated by astronauts resident on the station. Skylab made the first time-resolved observations of the solar transition region and of ultraviolet emissions from the solar corona. Discoveries included the first observations of coronal mass ejections, then called "coronal transients", and of coronal holes, now known to be intimately associated with the solar wind.
In the 1970s, much research focused on the abundances of iron-group elements in the Sun. Although significant research was done, until 1978 it was difficult to determine the abundances of some iron-group elements (e.g. cobalt and manganese) via spectrography because of their hyper-fine structures. The first largely complete set of oscillator strengths of singly ionized iron-group elements were made available in the 1960s, and these were subsequently improved. In 1978, the abundances of singly ionized elements of the iron group were derived.
Various authors have considered the existence of a gradient in the isotopic compositions of solar and planetary noble gases, e.g. correlations between isotopic compositions of neon and xenon in the Sun and on the planets. Prior to 1983, it was thought that the whole Sun has the same composition as the solar atmosphere. In 1983, it was claimed that it was fractionation in the Sun itself that caused the isotopic-composition relationship between the planetary and solar-wind-implanted noble gases.
In 1980, the Solar Maximum Mission was launched by NASA. This spacecraft was designed to observe gamma rays, X-rays and UV radiation from solar flares during a time of high solar activity and solar luminosity. Just a few months after launch, however, an electronics failure caused the probe to go into standby mode, and it spent the next three years in this inactive state. In 1984 Space Shuttle Challenger mission STS-41C retrieved the satellite and repaired its electronics before re-releasing it into orbit. The Solar Maximum Mission subsequently acquired thousands of images of the solar corona before re-entering Earth's atmosphere in June 1989.
Launched in 1991, Japan's Yohkoh (Sunbeam) satellite observed solar flares at X-ray wavelengths. Mission data allowed scientists to identify several different types of flares and demonstrated that the corona away from regions of peak activity was much more dynamic and active than had previously been supposed. Yohkoh observed an entire solar cycle but went into standby mode when an annular eclipse in 2001 caused it to lose its lock on the Sun. It was destroyed by atmospheric re-entry in 2005.
One of the most important solar missions to date has been the Solar and Heliospheric Observatory, jointly built by the European Space Agency and NASA and launched on 2 December 1995. Originally intended to serve a two-year mission, a mission extension through 2012 was approved in October 2009. It has proven so useful that a follow-on mission, the Solar Dynamics Observatory, was launched in February 2010. Situated at the Lagrangian point between Earth and the Sun (at which the gravitational pull from both is equal), SOHO has provided a constant view of the Sun at many wavelengths since its launch. Besides its direct solar observation, SOHO has enabled the discovery of a large number of comets, mostly tiny sun-grazing comets that incinerate as they pass the Sun.
All these satellites have observed the Sun from the plane of the ecliptic, and so have only observed its equatorial regions in detail. The Ulysses probe was launched in 1990 to study the Sun's polar regions. It first traveled to Jupiter, to "slingshot" into an orbit that would take it far above the plane of the ecliptic. Once Ulysses was in its scheduled orbit, it began observing the solar wind and magnetic field strength at high solar latitudes, finding that the solar wind from high latitudes was moving at about 750 km/s, which was slower than expected, and that there were large magnetic waves emerging from high latitudes that scattered galactic cosmic rays.
Elemental abundances in the photosphere are well known from spectroscopic studies, but the composition of the interior of the Sun is more poorly understood. A solar wind sample return mission, Genesis, was designed to allow astronomers to directly measure the composition of solar material.
Some of the notable space missions include:
Solar Terrestrial Relations Observatory (STEREO) mission was launched in October 2006. Two identical spacecraft were launched into orbits that cause them to (respectively) pull further ahead of and fall gradually behind Earth. This enables stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.
Parker Solar Probe was launched in 2018 aboard a Delta IV Heavy rocket and will reach a perihelion of 0.046 AU in 2025, making it the closest-orbiting man-made satellite as the first spacecraft to fly low into the solar corona.
Solar Orbiter mission (SolO) was launched in 2020 and will reach a minimum perihelion of 0.28 AU, making it the closest satellite with sun-facing cameras.
Indian Space Research Organization has scheduled the launch of a 100 kg satellite named Aditya-L1 for September or October 2022. Its main instrument will be a coronagraph for studying the dynamics of the solar corona.
Unsolved problems
Coronal heating
The temperature of the photosphere is approximately 6,000 K, whereas the temperature of the corona reaches 1,000,000–2,000,000 K. The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere.
It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first is wave heating, in which sound, gravitational or magneto-hydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient matter in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in the form of large solar flares and myriad similar but smaller events—nanoflares.
Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona. In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms.
Faint young Sun
Theoretical models of the Sun's development suggest that 3.8 to 2.5 billion years ago, during the Archean eon, the Sun was only about 75% as bright as it is today. Such a weak star would not have been able to sustain liquid water on Earth's surface, and thus life should not have been able to develop. However, the geological record demonstrates that Earth has remained at a fairly constant temperature throughout its history and that the young Earth was somewhat warmer than it is today. One theory among scientists is that the atmosphere of the young Earth contained much larger quantities of greenhouse gases (such as carbon dioxide, methane) than are present today, which trapped enough heat to compensate for the smaller amount of solar energy reaching it.
However, examination of Archaean sediments appears inconsistent with the hypothesis of high greenhouse concentrations. Instead, the moderate temperature range may be explained by a lower surface albedo brought about by less continental area and the lack of biologically induced cloud condensation nuclei. This would have led to increased absorption of solar energy, thereby compensating for the lower solar output.
Observation by eyes
The brightness of the Sun can cause pain from looking at it with the naked eye; however, doing so for brief periods is not hazardous for normal non-dilated eyes. Looking directly at the Sun (sun-gazing) causes phosphene visual artifacts and temporary partial blindness. It also delivers about 4 milliwatts of sunlight to the retina, slightly heating it and potentially causing damage in eyes that cannot respond properly to the brightness. Long-duration viewing of the direct Sun with the naked eye can begin to cause UV-induced, sunburn-like lesions on the retina after about 100 seconds, particularly under conditions where the UV light from the Sun is intense and well focused.
Viewing the Sun through light-concentrating optics such as binoculars may result in permanent damage to the retina without an appropriate filter that blocks UV and substantially dims the sunlight. When using an attenuating filter to view the Sun, the viewer is cautioned to use a filter specifically designed for that use. Some improvised filters that pass UV or IR rays, can actually harm the eye at high brightness levels. Brief glances at the midday Sun through an unfiltered telescope can cause permanent damage.
During sunrise and sunset, sunlight is attenuated because of Rayleigh scattering and Mie scattering from a particularly long passage through Earth's atmosphere, and the Sun is sometimes faint enough to be viewed comfortably with the naked eye or safely with optics (provided there is no risk of bright sunlight suddenly appearing through a break between clouds). Hazy conditions, atmospheric dust, and high humidity contribute to this atmospheric attenuation.
An optical phenomenon, known as a green flash, can sometimes be seen shortly after sunset or before sunrise. The flash is caused by light from the Sun just below the horizon being bent (usually through a temperature inversion) towards the observer. Light of shorter wavelengths (violet, blue, green) is bent more than that of longer wavelengths (yellow, orange, red) but the violet and blue light is scattered more, leaving light that is perceived as green.
Religious aspects
Solar deities play a major role in many world religions and mythologies. Worship of the Sun was central to civilizations such as the ancient Egyptians, the Inca of South America and the Aztecs of what is now Mexico. In religions such as Hinduism, the Sun is still considered a god, he is known as Surya Dev. Many ancient monuments were constructed with solar phenomena in mind; for example, stone megaliths accurately mark the summer or winter solstice (some of the most prominent megaliths are located in Nabta Playa, Egypt; Mnajdra, Malta and at Stonehenge, England); Newgrange, a prehistoric human-built mount in Ireland, was designed to detect the winter solstice; the pyramid of El Castillo at Chichén Itzá in Mexico is designed to cast shadows in the shape of serpents climbing the pyramid at the vernal and autumnal equinoxes.
The ancient Sumerians believed that the Sun was Utu, the god of justice and twin brother of Inanna, the Queen of Heaven, who was identified as the planet Venus. Later, Utu was identified with the East Semitic god Shamash. Utu was regarded as a helper-deity, who aided those in distress, and, in iconography, he is usually portrayed with a long beard and clutching a saw, which represented his role as the dispenser of justice.
From at least the Fourth Dynasty of Ancient Egypt, the Sun was worshipped as the god Ra, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the New Empire period, the Sun became identified with the dung beetle, whose spherical ball of dung was identified with the Sun. In the form of the sun disc Aten, the Sun had a brief resurgence during the Amarna Period when it again became the preeminent, if not only, divinity for the Pharaoh Akhenaton.
The Egyptians portrayed the god Ra as being carried across the sky in a solar barque, accompanied by lesser gods, and to the Greeks, he was Helios, carried by a chariot drawn by fiery horses. From the reign of Elagabalus in the late Roman Empire the Sun's birthday was a holiday celebrated as Sol Invictus (literally "Unconquered Sun") soon after the winter solstice, which may have been an antecedent to Christmas. Regarding the fixed stars, the Sun appears from Earth to revolve once a year along the ecliptic through the zodiac, and so Greek astronomers categorized it as one of the seven planets (Greek planetes, "wanderer"); the naming of the days of the weeks after the seven planets dates to the Roman era.
In Proto-Indo-European religion, the Sun was personified as the goddess *Seh2ul. Derivatives of this goddess in Indo-European languages include the Old Norse Sól, Sanskrit Surya, Gaulish Sulis, Lithuanian Saulė, and Slavic Solntse. In ancient Greek religion, the sun deity was the male god Helios, who in later times was syncretized with Apollo.
In the Bible, Malachi 4:2 mentions the "Sun of Righteousness" (sometimes translated as the "Sun of Justice"), which some Christians have interpreted as a reference to the Messiah (Christ). In ancient Roman culture, Sunday was the day of the sun god. It was adopted as the Sabbath day by Christians who did not have a Jewish background. The symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions. In paganism, the Sun was a source of life, giving warmth and illumination to mankind. It was the center of a popular cult among Romans, who would stand at dawn to catch the first rays of sunshine as they prayed. The celebration of the winter solstice (which influenced Christmas) was part of the Roman cult of the unconquered Sun (Sol Invictus). Christian churches were built with an orientation so that the congregation faced toward the sunrise in the East.
Tonatiuh, the Aztec god of the sun, was usually depicted holding arrows and a shield and was closely associated with the practice of human sacrifice. The sun goddess Amaterasu is the most important deity in the Shinto religion, and she is believed to be the direct ancestor of all Japanese emperors.
Comments
Post a Comment