Our Solar System: The Moon Part II


 

Moon illusion


The Moon does appear larger when close to the horizon, but this is a purely psychological effect, known as the Moon illusion, first described in the 7th century BC.


Illumination and brightness


Half of the Moon's surface is always illuminated by the Sun (except during a lunar eclipse). But also Earth does reflect light onto the Moon, observable at times as Earth-light when again reflected to Earth from the Near side of the Moon where it is not illuminated by the Sun.


Reported as a "super-moon", on 14 November 2016, the Moon was at full phase closer to Earth than it has been since 1948, 14% closer and larger than its farthest position in apogee. This closest point coincided within an hour of a full moon, and it was 30% more luminous than when at its greatest distance because its increased apparent diameter. At lower levels, the human perception of reduced brightness as a percentage is provided by the following formula:


perceived reduction % = 100 × actual reduction % 100 {\displaystyle {\text{perceived reduction}}\%=100\times {\sqrt {{\text{actual reduction}}\% \over 100}}} {\displaystyle {\text{perceived reduction}}\%=100\times {\sqrt {{\text{actual reduction}}\% \over 100}}}


When the actual reduction is 1.00 / 1.30, or about 0.770, the perceived reduction is about 0.877, or 1.00 / 1.14. This gives a maximum perceived increase of 14% between apogee and perigee moons of the same phase.


Eclipses


Eclipses only occur when the Sun, Earth, and Moon are all in a straight line (termed "syzygy"). Solar eclipses occur at new moon, when the Moon is between the Sun and Earth. In contrast, lunar eclipses occur at full moon, when Earth is between the Sun and Moon. The apparent size of the Moon is roughly the same as that of the Sun, with both being viewed at close to one-half a degree wide. The Sun is much larger than the Moon but it is the vastly greater distance that gives it the same apparent size as the much closer and much smaller Moon from the perspective of Earth. The variations in apparent size, due to the non-circular orbits, are nearly the same as well, though occurring in different cycles. This makes possible both total (with the Moon appearing larger than the Sun) and annular (with the Moon appearing smaller than the Sun) solar eclipses. In a total eclipse, the Moon completely covers the disc of the Sun and the solar corona becomes visible to the naked eye. Because the distance between the Moon and Earth is very slowly increasing over time, the angular diameter of the Moon is decreasing. As it evolves toward becoming a red giant, the size of the Sun, and its apparent diameter in the sky, are slowly increasing. The combination of these two changes means that hundreds of millions of years ago, the Moon would always completely cover the Sun on solar eclipses, and no annular eclipses were possible. Likewise, hundreds of millions of years in the future, the Moon will no longer cover the Sun completely, and total solar eclipses will not occur.


Because the Moon's orbit around Earth is inclined by about 5.145° (5° 9') to the orbit of Earth around the Sun, eclipses do not occur at every full and new moon. For an eclipse to occur, the Moon must be near the intersection of the two orbital planes. The periodicity and recurrence of eclipses of the Sun by the Moon, and of the Moon by Earth, is described by the saros, which has a period of approximately 18 years.


Because the Moon continuously blocks the view of a half-degree-wide circular area of the sky, the related phenomenon of occultation occurs when a bright star or planet passes behind the Moon and is occulted: hidden from view. In this way, a solar eclipse is an occultation of the Sun. Because the Moon is comparatively close to Earth, occultations of individual stars are not visible everywhere on the planet, nor at the same time. Because of the precession of the lunar orbit, each year different stars are occulted.


Transient lunar phenomena


There has been historical controversy over whether observed features on the Moon's surface change over time. Today, many of these claims are thought to be illusory, resulting from observation under different lighting conditions, poor astronomical seeing, or inadequate drawings. However, out-gassing does occasionally occur and could be responsible for a minor percentage of the reported lunar transient phenomena. Recently, it has been suggested that a roughly 3 km (1.9 mi) diameter region of the lunar surface was modified by a gas release event about a million years ago.


History of exploration and human presence


Since pre-historic times people have taken note of the Moon's phases, its waxing and waning, and used it to keep record of time. Tally sticks, notched bones dating as far back as 20–30,000 years ago, are believed by some to mark the phases of the Moon. One of the earliest-discovered possible depictions of the Moon is a 5000-year-old rock carving Orthostat 47 at Knowth, Ireland.


The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former.  Elsewhere in the 5th century BC to 4th century BC, Babylonian astronomers had recorded the 18-year Saros cycle of lunar eclipses, and Indian astronomers had described the Moon's monthly elongation. The Chinese astronomer Shi Shen (fl. 4th century BC) gave instructions for predicting solar and lunar eclipses. 


In Aristotle's (384–322 BC) description of the universe, the Moon marked the boundary between the spheres of the mutable elements (earth, water, air and fire), and the imperishable stars of aether, an influential philosophy that would dominate for centuries. Archimedes (287–212 BC) designed a planetarium that could calculate the motions of the Moon and other objects in the Solar System. In the 2nd century BC, Seleucus of Seleucia correctly theorized that tides were due to the attraction of the Moon, and that their height depends on the Moon's position relative to the Sun. In the same century, Aristarchus computed the size and distance of the Moon from Earth, obtaining a value of about twenty times the radius of Earth for the distance.


Although the Chinese of the Han Dynasty believed the Moon to be energy equated to qi, their 'radiating influence' theory recognized that the light of the Moon was merely a reflection of the Sun, and Jing Fang (78–37 BC) noted the sphericity of the Moon.  Ptolemy (90–168 AD) greatly improved on the numbers of Aristarchus, calculating the values of a mean distance of 59 times Earth's radius and a diameter of 0.292 Earth diameters were close to the correct values of about 60 and 0.273 respectively. In the 2nd century AD, Lucian wrote the novel A True Story, in which the heroes travel to the Moon and meet its inhabitants. In 499 AD, the Indian astronomer Aryabhata mentioned in his Aryabhatiya that reflected sunlight is the cause of the shining of the Moon. The astronomer and physicist Alhazen (965–1039) found that sunlight was not reflected from the Moon like a mirror, but that light was emitted from every part of the Moon's sunlit surface in all directions. Shen Kuo (1031–1095) of the Song dynasty created an allegory equating the waxing and waning of the Moon to a round ball of reflective silver that, when doused with white powder and viewed from the side, would appear to be a crescent.


During the Middle Ages, before the invention of the telescope, the Moon was increasingly recognized as a sphere, though many believed that it was "perfectly smooth".


Telescopic exploration (1609-1959)


Telescopic mapping of the Moon followed: later in the 17th century, the efforts of Giovanni Battista Riccioli and Francesco Maria Grimaldi led to the system of naming of lunar features in use today. The more exact 1834–1836 Mappa Selenographica of Wilhelm Beer and Johann Heinrich Mädler, and their associated 1837 book Der Mond, the first trigonometrically accurate study of lunar features, included the heights of more than a thousand mountains, and introduced the study of the Moon at accuracies possible in earthly geography. Lunar craters, first noted by Galileo, were thought to be volcanic until the 1870s proposal of Richard Proctor that they were formed by collisions. This view gained support in 1892 from the experimentation of geologist Grove Karl Gilbert, and from comparative studies from 1920 to the 1940s, leading to the development of lunar stratigraphy, which by the 1950s was becoming a new and growing branch of astrogeology.


First missions to the Moon (1959–1990)


After World War II the first launch systems were developed and by the end of the 1950s they reached capabilities that allowed the Soviet Union and the United States to launch spacecrafts into space. The Cold War fueled a closely followed development of the launch systems by the two states, resulting in the so-called Space Race and its later phase the Moon Race, accelerating efforts and interest in exploration of the Moon.


First robotic missions (Soviet lunar program 1959-1976)


Spacecraft from the Soviet Union's Luna program were the first to accomplish a number of goals: following three unnamed, failed missions in 1958, the first human-made object to escape Earth's gravity and pass near the Moon was Luna 1 in 1959; the first human-made object to impact the lunar surface was Luna 2, and the first photographs of the normally occluded far side of the Moon were made by Luna 3, all in 1959.


The first spacecraft to perform a successful lunar soft landing was Luna 9 and the first vehicle to orbit the Moon was Luna 10, both in 1966. Rock and soil samples were brought back to Earth by three Luna sample return missions (Luna 16 in 1970, Luna 20 in 1972, and Luna 24 in 1976), which returned 0.3 kg total. Luna 17 deployed on the Moon the first remote controlled rover on an extraterrestrial surface, Lunokhod 1, in 1970.


First crewed missions (United States lunar program 1962-1973)


During the late 1950s at the height of the Cold War, the United States Army conducted a classified feasibility study that proposed the construction of a staffed military outpost on the Moon called Project Horizon with the potential to conduct a wide range of missions from scientific research to nuclear Earth bombardment. The study included the possibility of conducting a lunar-based nuclear test. The Air Force, which at the time was in competition with the Army for a leading role in the space program, developed its own similar plan called Lunex. However, both these proposals were ultimately passed over as the space program was largely transferred from the military to the civilian agency NASA.

The small blue-white semicircle of Earth, almost glowing with color in the blackness of space, rising over the limb of the desolate, cratered surface of the Moon.


Following President John F. Kennedy's 1961 commitment to a manned Moon landing before the end of the decade, the United States, under NASA leadership, launched a series of uncrewed probes to develop an understanding of the lunar surface in preparation for human missions: the Jet Propulsion Laboratory's Ranger program produced the first close-up pictures; the Lunar Orbiter program produced maps of the entire Moon; the Surveyor program landed its first spacecraft four months after Luna 9. The crewed Apollo program was developed in parallel; after a series of uncrewed and crewed tests of the Apollo spacecraft in Earth orbit, and spurred on by a potential Soviet lunar human landing, in 1968 Apollo 8 made the first human mission to lunar orbit. The subsequent landing of the first humans on the Moon in 1969 is seen by many as the culmination of the Space Race.


Neil Armstrong became the first person to walk on the Moon as the commander of the American mission Apollo 11 by first setting foot on the Moon at 02:56 UTC on 21 July 1969. An estimated 500 million people worldwide watched the transmission by the Apollo TV camera, the largest television audience for a live broadcast at that time. The Apollo missions 11 to 17 (except Apollo 13, which aborted its planned lunar landing) removed 380.05 kilograms (837.87 lb) of lunar rock and soil in 2,196 separate samples.


Scientific instrument packages were installed on the lunar surface during all the Apollo landings. Long-lived instrument stations, including heat flow probes, seismometers, and magnetometers, were installed at the Apollo 12, 14, 15, 16, and 17 landing sites. Direct transmission of data to Earth concluded in late 1977 because of budgetary considerations, but as the stations' lunar laser ranging corner-cube retro-reflector arrays are passive instruments, they are still being used. Ranging to the stations is routinely performed from Earth-based stations with an accuracy of a few centimeters, and data from this experiment are being used to place constraints on the size of the lunar core.


The American Moon landing and return was enabled by considerable technological advances in the early 1960s, in domains such as ablation chemistry, software engineering, and atmospheric re-entry technology, and by highly competent management of the enormous technical undertaking.


Apollo 17 in 1972 remains the last crewed mission to the Moon. Explorer 49 in 1973 was the last dedicated U.S. probe to the Moon until the 1990s.


Moon Treaty and explorational absence (1976–1990)


A near lunar quietude followed the 24th and last Luna as well as Soviet mission to the Moon in 1976 until 1990, for fourteen years. Astronautics had shifted its focus towards the exploration of the inner (e.g. Venera program) and outer (e.g. Pioneer 10, 1972) Solar System planets, but also towards Earth orbit, developing and continuously operating, beside communication satellites, Earth observation satellites (e.g. Landsat program, 1972) space telescopes and particularly space stations (e.g. Salyut program, 1971).


The until 1979 negotiated Moon treaty, with its ratification in 1984 by its few signatories was about the only major activity regarding the Moon until 1990.


Renewed exploration (1990-present)


In 1990 Hiten-Hagoromo, the first dedicated lunar mission since 1976, reached the Moon. Sent by Japan it became the first mission that was not a Soviet Union or U.S. mission to the Moon.


In 1994, the U.S. dedicated again for the first time since 1973 a mission to fly a spacecraft (Clementine) to the Moon. This mission obtained the first near-global topographic map of the Moon, and the first global multi-spectral images of the lunar surface. In 1998 this was followed by the Lunar Prospector mission, which instruments indicated the presence of excess hydrogen at the lunar poles, which is likely to have been caused by the presence of water ice in the upper few meters of the regolith within permanently shadowed craters.


The next years saw a row of first missions to the Moon by a new group of statea actively exploring the Moon. Between 2004 and 2006 the first spacecraft by the European Space Agency (ESA) (SMART-1) reached the Moon, recording the first detailed survey of chemical elements on the lunar surface. The Chinese Lunar Exploration Program began with Chang'e 1 between 200 and 2009, obtaining a full image map of the Moon. India reached the Moon in 2008 for the first time with its Chandrayaan-1 creating a high-resolution chemical, mineralogical and photo-geological map of the lunar surface, and confirming the presence of water molecules in lunar soil.


The U.S. launched the Lunar Reconnaissance Orbiter (LRO) and the LCROSS impactor on 18 June 2009. LCROSS completed its mission by making a planned and widely observed impact in the crater Cabeus on 9 October 2009, whereas LRO is currently in operation, obtaining precise lunar altimetry and high-resolution imagery.


China continued its luna program in 2010 with Chang'e 2, mapping the surface at a higher resolution over an eight-month period, and in 2013 with Chang'e 3, a lunar lander, deploying a lunar rover, named Yutu (Chinese: 玉兔; literally "Jade Rabbit"). This was the first lunar rover mission since Lunokhod 2 in 1973 and the first lunar soft landing since Luna 24 in 1976. In 2014 the first privately funded probe, the Manfred Memorial Moon Mission reached the Moon.


Another Chinese rover mission, Chang'e 4, achieved in early 2019 the first landing on the Moon's far side.


Also in 2019 India sent successfully its second probe, Chandrayaan-2 to the Moon and China in 2020 carried out its first robotic sample return mission (Chang'e 5), bringing back 1,731 grams of lunar material to Earth.


With the signing of the U.S. led Artemis Accords in 2020, the Artemis program of the U.S., to return in the 2020s astronauts to the Moon, has been joined by a growing number of countries. The introduction of the Artemis Accords has fueled a renewed discussion about the international framework and cooperation of lunar activity, building on the Moon Treaty and the ESA led Moon Village concept. The different, since 2004 developed plans of the U.S. to return astronauts to the Moon cumulated in the Artemis program, include the plan to send the first woman to the Moon and the plan to build an international lunar space station called Lunar Gateway.


Future


Upcoming lunar missions include Artemis 1 and Russia's first lunar mission, Luna-Glob: an uncrewed lander with a set of seismometers, and an orbiter based on its failed Martian Fobos-Grunt mission.


China has announced in 2021 the plan to develop and construct with Russia an International Lunar Research Station towards and into the 2030s. India in 2006 had among others expressed its hope to send people to the Moon by 2020.


Human presence


Human impact


Pollution, contamination and sustainability


While the Moon has the lowest planetary protection target-categorization, its degradation as a pristine body and scientific place has been discussed and particularly understood regarding keeping the Shielded Zone of the Moon (SZM) on the far side, of value for astronomy from the Moon, free from any radio spectrum pollution, as well as conserving the special and scientifically interesting nature of the Moon, in face of prospecting commercial and national projects to claim and exploit the Moon. While the Moon has no significant atmosphere, traffic and impacts on the Moon causes clouds of dust that can spread far and possibly contaminate the original state of the Moon and its special scientific content. Scholar Alice Gorman asserts that, although the Moon is inhospitable, it is not dead, and that sustainable human activity would require treating the Moon's ecology as a co-participant.


The so-called "Tardigrade affair" of the 2019 crashed Beresheet lander and its carrying of tardigrades has been discussed as an example for lacking measures and lacking international regulation for planetary protection.


Space debris beyond Earth around the Moon has been considered as a future challenge with increasing numbers of missions to the Moon, particularly as a danger for such missions. As such lunar waste management has been raised as an issue which future lunar missions, particularly on the surface, need to tackle.


Beside the remains of human activity on the Moon, there have been some intended permanent installations like the Moon Museum art piece, Apollo 11 goodwill messages, six Lunar plaques, the Fallen Astronaut memorial, and other artifacts.


Infrastructure


Long-term missions continuing to be active are some orbiters such as the 2009-launched Lunar Reconnaissance Orbiter surveilling the Moon for future missions, as well as some Landers such as the 2013-launched Chang'e 3 with its Lunar Ultraviolet Telescope still operational. Five retro-reflectors have been installed on the Moon since the 1970s and since used for accurate measurements of the physical librations through laser ranging to the Moon.


There are several missions by different agencies and companies planned to establish a long-term human presence on the Moon, with the Lunar Gateway as the currently most advanced project as part of the Artemis program.


Astronomy from the Moon


For many years, the Moon has been recognized as an excellent site for telescopes. It is relatively nearby; astronomical seeing is not a concern; certain craters near the poles are permanently dark and cold, and thus especially useful for infrared telescopes; and radio telescopes on the far side would be shielded from the radio chatter of Earth. The lunar soil, although it poses a problem for any moving parts of telescopes, can be mixed with carbon nanotubes and epoxies and employed in the construction of mirrors up to 50 meters in diameter. A lunar zenith telescope can be made cheaply with an ionic liquid.


In April 1972, the Apollo 16 mission recorded various astronomical photos and spectra in ultraviolet with the Far Ultraviolet Camera/Spectrograph.


The Moon has been also a sight of Earth observation, particularly culturally as in the imagery called Earthrise.


Living on the Moon


The only instances of humans living on the Moon have taken place in an Apollo Lunar Module (for example, during the Apollo 17 mission) for several days at a time. One challenge to astronauts during their stay on the surface is that lunar dust sticks to their suits and is carried into their quarters. Astronauts could taste and smell the dust, calling it the "Apollo aroma". This fine lunar dust can cause health issues.


In 2019 at least one plant seed sprouted in an experiment on the Chang'e 4 lander. It was carried from Earth along with other small life in its Lunar Micro Ecosystem.


Legal status


Although Luna landers scattered pennants of the Soviet Union on the Moon, and U.S.A. flags were symbolically planted at their landing sites by the Apollo astronauts, no nation claims ownership of any part of the Moon's surface. Likewise no private ownership of parts of the Moon, or as a whole, is considered credible.


The 1967 Outer Space Treaty defines the Moon and all outer space as the "province of all mankind". It restricts the use of the Moon to peaceful purposes, explicitly banning military installations and weapons of mass destruction. A majority of countries are parties of this treaty. The 1979 Moon Agreement was created to elaborate, and restrict the exploitation of the Moon's resources by any single nation, leaving it to a yet unspecified international regulatory regime. As of January 2020, it has been signed and ratified by 18 nations, none of which have human spaceflight capabilities.


Since 2020 countries have joined the U.S.A. in their Artemis Accords, which are challenging the treaty. The U.S.A. has furthermore emphasized in an presidential executive order ("Encouraging International Support for the Recovery and Use of Space Resources.") that "the United States does not view outer space as a 'global commons'" and calls the Moon Agreement "a failed attempt at constraining free enterprise."


With Australia signing and ratifying both the Moon Treaty in 1986 as well as the Artemis Accords in 2020, there has been a discussion if they can be harmonized. In this light an Implementation Agreement for the Moon Treaty has been advocated for, as a way to compensate for the shortcomings of the Moon Treaty and to harmonize it with other laws, allowing it to be more widely accepted.


In the face of such increasing commercial and national interest, particularly prospecting territories, U.S.A. lawmakers have introduced in late 2020 specific regulation for the conservation of historic landing sites and interest groups have argued for making such sites World Heritage Sites and zones of scientific value protected zones, all of which add to the legal availability and territorialization of the Moon.


In 2021 the Declaration of the Rights of the Moon was created by a group of "lawyers, space archaeologists and concerned citizens", drawing on precedents in the Rights of Nature movement and the concept of legal personality for non-human entities in space.


Coordination


In light of future development on the Moon some international and multi-space agency organizations have been created:


International Lunar Exploration Working Group (ILEWG)

Moon Village Association (MVA)

International Space Exploration Coordination Group (ISECG)


In culture and life


Calendar


Since pre-historic times people have taken note of the Moon's phases, its waxing and waning, and used it to keep record of time. Tally sticks, notched bones dating as far back as 20–30,000 years ago, are believed by some to mark the phases of the Moon. The counting of the days between the Moon's phases gave eventually rise to generalized time periods of the full lunar cycle as months, and possibly of its phases as weeks.


The words for the month in a range of different languages carry this relation between the period of the month and the Moon etymologically. The English month as well as moon, and its cognates in other Indo-European languages (e.g. the Latin mensis and Ancient Greek μείς (meis) or μήν (mēn), meaning "month") stem from the Proto-Indo-European (PIE) root of moon, *méh1nōt, derived from the PIE verbal root *meh1-, "to measure", "indicat[ing] a functional conception of the Moon, i.e. marker of the month" (cf. the English words measure and menstrual). To give another example from a different language family, the Chinese language uses the same word () for moon as well as for month, which furthermore can be found in the symbols for the word week (星期).


This lunar timekeeping gave rise to the historically dominant, but varied, lunisolar calendars. The 7th-century Islamic calendar is an example of a purely lunar calendar, where months are traditionally determined by the visual sighting of the hilal, or earliest crescent moon, over the horizon.[295]

A Moon-cake, given to people at the Harvest Moon Festival, the second most important celebration of the Chinese Lunar Calendar, after Chinese New Year.


Of particular significance has been for a range of cultures and calendars the occasion of the Full Moon, to use or celebrate, particularly around the autumnal equinox, the so-called Harvest Moon.


Furthermore association of time with the Moon can also be found in religion, such as the ancient Egyptian temporal and lunar deity Khonsu.


Cultural representation


Lunar deities


Rabbits are in a range of cultures identified with the Moon, from China to the Indigenous peoples of the Americas, as with the rabbit (on the left) of the Maya moon goddess (6th–9th century).

From top: examples of lunar deities featuring around the world recurring aspects, like the crescent (Nanna/Sîn, c. 2100 BC), crescent headgear and chariot (Luna, 2nd–5th century), as well as the Moon rabbit (Mayan moon goddess, 6th–9th century).


Since prehistoric and ancient times humans have depicted and interpreted the Moon, particularly for astrology and religion, as lunar deity.


Moon symbol (planetary color).svg


For the representation of the Moon, especially its lunar phases, the crescent symbol has been particularly used by many cultures. In writing systems such as Chinese the crescent has developed into the symbol , the word for Moon, and in ancient Egyptian it was the symbol 𓇹, which is spelled like the ancient Egyptian lunar deity Iah, meaning Moon.


Iconographically the crescent was used in Mesopotamia as the primary symbol of Nanna/Sîn, the ancient Sumerian lunar deity, who was the father of Innana/Ishtar, the goddess of the planet Venus (symbolized as the eight pointed Star of Ishtar), and Utu/Shamash, the god of the Sun (symbolized as a disc, optionally with eight rays), all three often depicted next to each other. Nanna was later known as Sîn, and was particularly associated with magic and sorcery.


The crescent was further used as an element of lunar deities wearing head-gears or crowns in an arrangement reminiscent of horns, as in the case of the ancient Greek Selene or the ancient Egyptian Khonsu. Selene is associated with Artemis and paralleled by the Roman Luna, which both are occasionally depicted driving a chariot, like the Hindu lunar deity Chandra. The different or sharing aspects of deities within pantheons has been observed in many cultures, especially by later or contemporary culture, particularly forming triple deities. The Moon in Roman mythology for example has been associated with Juno and Diana, while Luna being identified as their by-name and as part of a triplet (diva triformis) with Diana and Proserpina, Hecate being identified as their binding manifestation as trimorphos.


The star and crescent (☪️) arrangement goes back to the Bronze Age, representing either the Sun and Moon, or the Moon and planet Venus, in combination. It came to represent the goddess Artemis or Hecate, and via the patronage of Hecate came to be used as a symbol of Byzantium, possibly influencing the development of the Ottoman flag, specifically the combination of the Turkish crescent with a star. Since then the heraldric use of the star and crescent proliferated becoming a popular symbol for Islam (as the hilal of the Islamic calendar) and for a range of nations.


In Roman Catholic Marian veneration, the Virgin Mary (Queen of Heaven) has been depicted since the late middle ages on a crescent and adorned with stars. In Islam Muhammad is particularly attributed with the Moon through the so-called splitting of the Moon (Arabic: انشقاق القمر) miracle.


The contrast between the brighter highlands and the darker maria have been seen by different cultures forming abstract shapes, which are among others the Man in the Moon or the Moon Rabbit (e.g. the Chinese Tu'er Ye or in Indigenous American mythologies, as with the aspect of the Mayan Moon goddess).


In Western alchemy silver is associated with the Moon, and gold with the Sun.


Modern representation


The perception of the Moon in modern times has been informed by telescope enabled modern astronomy and later by spaceflight enabled actual human activity at the Moon, particularly the culturally impactful lunar landings. These new insights inspired cultural references, connecting romantic reflections about the Moon and speculative fiction such as science-fiction dealing with the Moon.


Contemporarily the Moon has been seen as a place for economic expansion into space, with missions prospecting for lunar resources. This has been accompanied with renewed public and critical reflection on humanity's cultural and legal relation to the celestial body, especially regarding colonialism, as in the 1970 poem "Whitey on the Moon". In this light the Moon's nature has been invoked, particularly for lunar conservation and as a common.


A song titled "Moon Anthem" by Abhay Kumar, paralleling the proposals for an Earth Anthem, was released 2019 on the occasion of India's lunar probe Chandrayaan-2.


The Moon is prominently featured in Vincent van Gogh's 1889 painting, The Starry Night (left). An iconic image of the Man in the Moon from the first science-fiction film set in space, A Trip to the Moon (1902), inspired by a history of literature about going to the Moon (right).


Lunar effect



The lunar effect is a purported unproven correlation between specific stages of the roughly 29.5-day lunar cycle and behavior and physiological changes in living beings on Earth, including humans. The Moon has long been associated with insanity and irrationality; the words lunacy and lunatic are derived from the Latin name for the Moon, Luna. Philosophers Aristotle and Pliny the Elder argued that the full moon induced insanity in susceptible individuals, believing that the brain, which is mostly water, must be affected by the Moon and its power over the tides, but the Moon's gravity is too slight to affect any single person. Even today, people who believe in a lunar effect claim that admissions to psychiatric hospitals, traffic accidents, homicides or suicides increase during a full moon, but dozens of studies invalidate these claims.



 

Comments