Sunday, July 31, 2022

In Memoriam: Celebrities Lost 1801



Benedict Arnold

Philip Hamilton

Paul I of Russia

Novalis

William Legge, 2nd Earl of Dartmouth

Archduke Maria Clementina of Austria

Ignacy Krasicki

Carl Stamitz

Motdori Norinaga

Archduke Maximilian Francis of Austria

Franz Moritz von Lacy

Charles Louis, Hereditary Prince of Baden

Jonathan Battishill

Antoine Rivaroli, Count de Rivarol

Felix Maria de Samaniego

Deodat Gratet de Dolomieu

Elizabeth Graeme Fergusson

Darya Nikolayevna Saltykova

Johann Kaspar Lavater

Domenico Cimarosa

Nikolai Vasilyyeich Repnin

Saint Chong Yak-Jong

Grand Duchess Alexandra Pavlovna of Russia

Princess Philippine Charlotte of Prussia

Ivan Gannibal

Sir George Staunton, 1st Baronet

Daniel Chodowiecki

Friedrich Hornemann

Devereux Jarratt

 

Happy Birthday: July 31, 2022



Michael Biehn, 66

Mark Cuban, 64

Wesley Snipes,  60

Dean Cain, 56

Zac Brown, 44

B. J. Novak, 43

Don Murray, 91

Susan Flannery, 83

France Nuyen, 83

Lobo, 79

Geraldine Chaplin, 78

Gary Lewis, 77

Lane Davies, 72

Barry Van Dyke, 71

Alan Autry, 70

Michael Wolff, 70

James Read, 69

Daniel Ash, 65

Dirk Blocker, 65

Bill Berry, 64

Wally Kurth, 64

Chad Brock, 59

Fatboy Slim, 59

Jim Corr, 58

Jim True-Frost, 56

Loren Dean, 53

Eve Best, 51

Annie Parisse, 47

Robert Telfer, 45

Lil Uzi Vert, 28

Rico Rodriguez, 24

J. K. Rowling, 57

Tim Couch, 45

Milton Friedman (July 31, 1912-November 16, 2006)

Ted Cassidy (July 31, 1932-January 16, 1979)

 

In Memoriam: Celebrities Lost 1802



Martha Washington

Joseph Ducreux

Erasmus Darwin

Francis Lewis

Sobek Neferu

Ludovico Manin

Andre Nichaux

Daniel Morgan

Prince Henry of Prussia

Thomas Girtin

Ferdinand, Duke of Parma

Louis-Marie Stanislas Freron

Roger Kemble

Esek Hopkins

Charles Leclerc

George Romney

Camillo Federici

Edward Hand

Charles Alexander Decalonne

Giuseppe Sarti

Domenico Angelo

La Mulatresse Solitude

Franz Aedinus

Samuel Arnold

Joseph Duplessis

Xavier Bichfit

Johann Rudolf Zumsteeg

John Fitzgibbon, 1st Earl of Clare

Alexander Radishchev

Francis Russell, 5th Duke of Bedford

Richard Owen Cambridge

 

Happy Birthday: July 30, 2022

 



Paul Anka, 81

Arnold Schwarzenegger, 75

Jean Reno, 74

Delta Burke, 66

Laurence Fishburne, 61

Lisa Kudrow, 59

Vivica A. Fox, 58

Christopher Nolan, 52

Tom Green, 51

Christine Taylor, 51

Hilary Swank, 48

Jaime Pressly, 45

Gina Rodriguez, 38

Joey  King, 23

Buddy Guy, 86

David Saborn, 77

William Atherton, 75

Ken Olin, 68

Richard Burgi, 64

Kate Bush, 64

Neal McCoy, 64

Dwayne O'Brien, 59

Terry Crews, 54

Simon Baker, 53

Brad Hargreaves, 51

Dean Edwards, 49

Seth Avett, 42

April Bowlby, 42

Yvonne Strahovski, 40

Martin Starr, 40

Bud Selig, 88

Misty May-Trainor, 45

Hope Solo, 41

Emily Bronte (July 30, 1818-December 19, 1848)

Henry Ford (July 30, 1863-April 7, 1947)

Friday, July 29, 2022

In Memoriam: Celebrities Lost 1803



Samuel Adams

Toussaint Louverture

Johann Gottfried Herder

Robert Emmet

Matthew Thornton

Adelaide Labille-Guiard

Franz Xaver Suss Mayr

William Hamilton

Grand Duchess Elena Pavlovna of Russia

Benjamin Edes

Ercole III d'Este, Duke of Modena

Johann Wilhelm Ludwig Gleim

George Bass

Cardinal de Rohan

Jean Francois de Saint-Lambert

Said bin Ahmad

Sylvain Marechal

Pierre Choderlos de Laclos

Charles William, Prince of Nassau-Usingen

Edmund Pendleton

Gottfried van Swieten

Vittorio Alfieri

Samuel Hopkins

Louis-Claude de Saint-Martin

Edward Marcus Despard

Friedrich Gottlieb Klopstock

Nicolas Baudin

Anders Chydenius

James Beattie

Francis Egerton, 3rd Duke of Bridgewater

Joseph Galloway

Louis I of Etruria

 

Happy Birthday: July 29, 2022



Ken Burns, 69

Geddy Lee, 69

Tom Gunn, 69

Martina McBride, 56

Wil Wheaton, 50

Stephen Dorff, 49

Josh Radnor, 48

Robert Fuller, 89

David Warner, 81

Roz Kelly, 80

Neal Doughty, 76

Mike Starr, 72

Pam Scialfa, 69

Alexandra Paul, 59

Dean Haglund, 57

Chris Gorman, 55

Tim Omundson, 53

Bryan Dattilo, 51

Ato Essandoh, 50

Wanya Morris, 49

James Otto, 49

Danger Mouse, 45

Rachel Miner, 42

Kaitlyn Black, 39

Cait Fairbanks, 29

Benito Mussolini (July 29, 1883-April 28, 1945)

Clara Bow (July 29, 1905-September 27, 1965)

Lou Albano (July 29, 1933-October 14, 2009)

Peter Jennings (July 29, 1938-August 7, 2005)

 

Thursday, July 28, 2022

Our Solar System: Jupiter Part II

 


Ground-based telescope research


In 1610, Italian polymath Galileo Galilei discovered the four largest moons of Jupiter (now known as the Galilean moons) using a telescope. This is thought to be the first telescopic observation of moons other than Earth's. Just one day after Galileo, Simon Marius independently discovered moons around Jupiter, though he did not publish his discovery in a book until 1614. It was Marius's names for the major moons, however, that stuck: Io, Europa, Ganymede, and Callisto. The discovery was a major point in favor of Copernicus' heliocentric theory of the motions of the planets; Galileo's outspoken support of the Copernican theory led to him being tried and condemned by the Inquisition.


During the 1660s, Giovanni Cassini used a new telescope to discover spots and colorful bands in Jupiter's atmosphere, observe that the planet appeared oblate, and estimate its rotation period. In 1692, Cassini noticed that the atmosphere undergoes differential rotation.


The Great Red Spot may have been observed as early as 1664 by Robert Hooke and in 1665 by Cassini, although this is disputed. The pharmacist Heinrich Schwabe produced the earliest known drawing to show details of the Great Red Spot in 1831. The Red Spot was reportedly lost from sight on several occasions between 1665 and 1708 before becoming quite conspicuous in 1878. It was recorded as fading again in 1883 and at the start of the 20th century.


Both Giovanni Borelli and Cassini made careful tables of the motions of Jupiter's moons, which allowed predictions of when the moons would pass before or behind the planet. By the 1670s, Cassini observed that when Jupiter was on the opposite side of the Sun from Earth, these events would occur about 17 minutes later than expected. Ole Rømer deduced that light does not travel instantaneously (a conclusion that Cassini had earlier rejected), and this timing discrepancy was used to estimate the speed of light.


In 1892, E. E. Barnard observed a fifth satellite of Jupiter with the 36-inch (910 mm) refractor at Lick Observatory in California. This moon was later named Amalthea. It was the last planetary moon to be discovered directly by a visual observer through a telescope. An additional eight satellites were discovered before the flyby of the Voyager 1 probe in 1979.

In 1932, Rupert Wildt identified absorption bands of ammonia and methane in the spectra of Jupiter. Three long-lived anticyclonic features called "white ovals" were observed in 1938. For several decades they remained as separate features in the atmosphere, sometimes approaching each other but never merging. Finally, two of the ovals merged in 1998, then absorbed the third in 2000, becoming Oval BA.


Space-based telescope research


On July 14, 2022, NASA presented images of Jupiter and related areas captured, for the first time, and including infrared views, by the James Webb Space Telescope (JWST).


Radio-telescope research


In 1955, Bernard Burke and Kenneth Franklin discovered that Jupiter emits bursts of radio waves at a frequency of 22.2 MHz.  The period of these bursts matched the rotation of the planet, and they used this information to determine a more precise value for Jupiter's rotation rate. Radio bursts from Jupiter were found to come in two forms: long bursts (or L-bursts) lasting up to several seconds, and short bursts (or S-bursts) lasting less than a hundredth of a second.


Scientists have discovered three forms of radio signals transmitted from Jupiter:


Decametric radio bursts (with a wavelength of tens of metres) vary with the rotation of Jupiter, and are influenced by the interaction of Io with Jupiter's magnetic field.


Decimetric radio emission (with wavelengths measured in centimeters) was first observed by Frank Drake and Hein Hvatum in 1959. The origin of this signal is a torus-shaped belt around Jupiter's equator, which generates cyclotron radiation from electrons that are accelerated in Jupiter's magnetic field.


Thermal radiation is produced by heat in the atmosphere of Jupiter.


Exploration


Jupiter has been visited by automated spacecraft since 1973, when the space probe Pioneer 10 passed close enough to Jupiter to send back revelations about its properties and phenomena. Missions to Jupiter are accomplished at a cost in energy, which is described by the net change in velocity of the spacecraft, or delta-v. Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s, which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit. Gravity assists through planetary flybys can be used to reduce the energy required to reach Jupiter.


Flyby missions


Pioneer 10 December 3, 1973 130,000 km

Pioneer 11 December 4, 1974 34,000 km

Voyager 1 March 5, 1979 349,000 km

Voyager 2 July 9, 1979 570,000 km

Ulysses February 8, 1992 408,894 km

February 4, 2004 120,000,000 km

Cassini December 30, 2000 10,000,000 km

New Horizons February 28, 2007 2,304,535 km


Beginning in 1973, several spacecraft have performed planetary flyby manoeuvres that brought them within observation range of Jupiter. The Pioneer missions obtained the first close-up images of Jupiter's atmosphere and several of its moons. They discovered that the radiation fields near the planet were much stronger than expected, but both spacecraft managed to survive in that environment. The trajectories of these spacecraft were used to refine the mass estimates of the Jovian system. Radio occultations by the planet resulted in better measurements of Jupiter's diameter and the amount of polar flattening.


Six years later, the Voyager missions vastly improved the understanding of the Galilean moons and discovered Jupiter's rings. They also confirmed that the Great Red Spot was anticyclonic. Comparison of images showed that the Spot had changed hue since the Pioneer missions, turning from orange to dark brown. A torus of ionized atoms was discovered along Io's orbital path, which were found to come from erupting volcanoes on the moon's surface. As the spacecraft passed behind the planet, it observed flashes of lightning in the night side atmosphere.


The next mission to encounter Jupiter was the Ulysses solar probe. In February 1992, it performed a flyby manoeuvre to attain a polar orbit around the Sun. During this pass, the spacecraft studied Jupiter's magnetosphere, although it had no cameras to photograph the planet. The spacecraft passed by Jupiter six years later, this time at a much greater distance.


In 2000, the Cassini probe flew by Jupiter on its way to Saturn, and provided higher-resolution images.


The New Horizons probe flew by Jupiter in 2007 for a gravity assist en route to Pluto. The probe's cameras measured plasma output from volcanoes on Io and studied all four Galilean moons in detail.


Galileo mission


The first spacecraft to orbit Jupiter was the Galileo mission, which reached the planet on December 7, 1995. It remained in orbit for over seven years, conducting multiple flybys of all the Galilean moons and Amalthea. The spacecraft also witnessed the impact of Comet Shoemaker–Levy 9 when it collided with Jupiter in 1994. Some of the goals for the mission were thwarted due to a malfunction in Galileo's high-gain antenna.


A 340-kilogram titanium atmospheric probe was released from the spacecraft in July 1995, entering Jupiter's atmosphere on December 7. It parachuted through 150 km (93 mi) of the atmosphere at a speed of about 2,575 km/h (1600 mph) and collected data for 57.6 minutes until the spacecraft was destroyed. The Galileo orbiter itself experienced a more rapid version of the same fate when it was deliberately steered into the planet on September 21, 2003. NASA destroyed the spacecraft in order to avoid any possibility of the spacecraft crashing into and possibly contaminating the moon Europa, which may harbour life.


Data from this mission revealed that hydrogen composes up to 90% of Jupiter's atmosphere. The recorded temperature was more than 300 °C (570 °F) and the wind-speed measured more than 644 km/h (>400 mph) before the probes vaporized.


Juno mission


NASA's Juno mission arrived at Jupiter on July 4, 2016 with the goal of studying the planet in detail from a polar orbit. The spacecraft was originally intended to orbit Jupiter thirty-seven times over a period of twenty months. During the mission, the spacecraft will be exposed to high levels of radiation from Jupiter's magnetosphere, which may cause future failure of certain instruments. On August 27, 2016, the spacecraft completed its first fly-by of Jupiter and sent back the first ever images of Jupiter's north pole.


Juno completed 12 orbits before the end of its budgeted mission plan, ending July 2018. In June of that year, NASA extended the mission operations plan to July 2021, and in January of that year the mission was extended to September 2025 with four lunar flybys: one of Ganymede, one of Europa, and two of Io. When Juno reaches the end of the mission, it will perform a controlled deorbit and disintegrate into Jupiter's atmosphere. This will avoid the risk of collision with Jupiter's moons.


Canceled missions and future plans


There is great interest in missions to study Jupiter's larger icy moons, which may have subsurface liquid oceans. Funding difficulties have delayed progress, causing NASA's JIMO (Jupiter Icy Moons Orbiter) to be canceled in 2005. A subsequent proposal was developed for a joint NASA/ESA mission called EJSM/Laplace, with a provisional launch date around 2020. EJSM/Laplace would have consisted of the NASA-led Jupiter Europa Orbiter and the ESA-led Jupiter Ganymede Orbiter. However, the ESA formally ended the partnership in April 2011, citing budget issues at NASA and the consequences on the mission timetable. Instead, ESA planned to go ahead with a European-only mission to compete in its L1 Cosmic Vision selection. These plans have been realized as the European Space Agency's Jupiter Icy Moon Explorer (JUICE), due to launch in 2023, followed by NASA's Europa Clipper mission, scheduled for launch in 2024.


Other proposed missions include the Chinese National Space Administration's Gan De mission which aims to launch an orbiter to the Jovian system and possibly Callisto around 2035, and CNSA's Interstellar Express and NASA's Interstellar, which would both use Jupiter's gravity to help them reach the edges of the heliosphere.


Moons


Jupiter has 80 known natural satellites. Of these, 60 are less than 10 km in diameter. The four largest moons are Io, Europa, Ganymede, and Callisto, collectively known as the "Galilean moons", and are visible from Earth with binoculars on a clear night.


Galilean moons


The moons discovered by Galileo—Io, Europa, Ganymede, and Callisto—are among the largest in the Solar System. The orbits of Io, Europa, and Ganymede form a pattern known as a Laplace resonance; for every four orbits that Io makes around Jupiter, Europa makes exactly two orbits and Ganymede makes exactly one. This resonance causes the gravitational effects of the three large moons to distort their orbits into elliptical shapes, because each moon receives an extra tug from its neighbours at the same point in every orbit it makes. The tidal force from Jupiter, on the other hand, works to circularize their orbits.


The eccentricity of their orbits causes regular flexing of the three moons' shapes, with Jupiter's gravity stretching them out as they approach it and allowing them to spring back to more spherical shapes as they swing away. The friction created by this tidal flexing generates heat in the interior of the moons. This is seen most dramatically in the volcanic activity of Io (which is subject to the strongest tidal forces), and to a lesser degree in the geological youth of Europa's surface, which indicates recent resurfacing of the moon's exterior.


Jupiter's moons were traditionally classified into four groups of four, based on their similar orbital elements. This picture has been complicated by the discovery of numerous small outer moons since 1999. Jupiter's moons are currently divided into several different groups, although there are several moons which are not part of any group.


The eight innermost regular moons, which have nearly circular orbits near the plane of Jupiter's equator, are thought to have formed alongside Jupiter, whilst the remainder are irregular moons and are thought to be captured asteroids or fragments of captured asteroids. The irregular moons within each group may have a common origin, perhaps as a larger moon or captured body that broke up.


Regular moons


Irregular moons


Himalia group: A tightly clustered group of moons with orbits around 11,000,000–12,000,000 km from Jupiter.


Ananke group: This retrograde orbit group has rather indistinct borders, averaging 21,276,000 km from Jupiter with an average inclination of 149 degrees.


Carme group: A fairly distinct retrograde group that averages 23,404,000 km from Jupiter with an average inclination of 165 degrees.


Pasiphae group: A dispersed and only vaguely distinct retrograde group that covers all the outermost moons.


Interaction with the Solar System


As the most massive of the eight planets, the gravitational influence of Jupiter has helped shape the Solar System. With the exception of Mercury, the orbits of the system's planets lie closer to Jupiter's orbital plane than the Sun's equatorial plane. The Kirkwood gaps in the asteroid belt are mostly caused by Jupiter, and the planet may have been responsible for the Late Heavy Bombardment in the inner Solar System's history.


In addition to its moons, Jupiter's gravitational field controls numerous asteroids that have settled around the Lagrangian points that precede and follow the planet in its orbit around the Sun. These are known as the Trojan asteroids, and are divided into Greek and Trojan "camps" to honour the Iliad. The first of these, 588 Achilles, was discovered by Max Wolf in 1906; since then more than two thousand have been discovered. The largest is 624 Hektor.


The Jupiter family is defined as comets that have a semi-major axis smaller than Jupiter's; most short-period comets belong to this group. Members of the Jupiter family are thought to form in the Kuiper belt outside the orbit of Neptune. During close encounters with Jupiter, they are perturbed into orbits with a smaller period, which then becomes circularized by regular gravitational interaction with the Sun and Jupiter.


Impacts


Jupiter has been called the Solar System's vacuum cleaner because of its immense gravity well and location near the inner Solar System. There are more impacts on Jupiter, such as comets, than on any other planet in the Solar System. For example, Jupiter experiences about 200 times more asteroid and comet impacts than Earth. In the past, scientists believed that Jupiter partially shielded the inner system from cometary bombardment. However, computer simulations in 2008 suggest that Jupiter does not cause a net decrease in the number of comets that pass through the inner Solar System, as its gravity perturbs their orbits inward roughly as often as it accretes or ejects them. This topic remains controversial among scientists, as some think it draws comets towards Earth from the Kuiper belt, while others believes that Jupiter protects Earth from the Oort cloud.


In July 1994, the Comet Shoemaker–Levy 9 comet collided with Jupiter. The impacts were closely observed by observatories around the world, including the Hubble Space Telescope and Galileo spacecraft. The event was widely covered by the media.


Surveys of early astronomical records and drawings produced eight examples of potential impact observations between 1664 and 1839. However, a 1997 review determined that these observations had little or no possibility of being the results of impacts. Further investigation by this team revealed a dark surface feature discovered by astronomer Giovanni Cassini in 1690 may have been an impact scar.


In culture


The planet Jupiter has been known since ancient times. It is visible to the naked eye in the night sky and can occasionally be seen in the daytime when the Sun is low. To the Babylonians, this planet represented their god Marduk, chief of their pantheon from the Hammurabi period. They used Jupiter's roughly 12-year orbit along the ecliptic to define the constellations of their zodiac.


The mythical Greek name for this planet is Zeus (Ζεύς), also referred to as Dias (Δίας), the planetary name of which is retained in modern Greek. The ancient Greeks knew the planet as Phaethon (Φαέθων), meaning "shining one" or "blazing star". The Greek myths of Zeus from the Homeric period showed particular similarities to certain Near-Eastern gods, including the Semitic El and Baal, the Sumerian Enlil, and the Babylonian god Marduk. The association between the planet and the Greek deity Zeus was drawn from Near Eastern influences and was fully established by the fourth century BCE, as documented in the Epinomis of Plato and his contemporaries.


The god Jupiter is the Roman counterpart of Zeus, and he is the principal god of Roman mythology. The Romans originally called Jupiter the "star of Jupiter" (Iuppiter Stella)," as they believed it to be sacred to its namesake god. This name comes from the Proto-Indo-European vocative compound Dyēu-pəter (nominative: Dyēus-pətēr, meaning "Father Sky-God", or "Father Day-God"). As the supreme god of the Roman pantheon, Jupiter was the god of thunder, lightning, and storms, and appropriately called the god of light and sky.


In Vedic astrology, Hindu astrologers named the planet after Brihaspati, the religious teacher of the gods, and often called it "Guru", which means the "Teacher". In Central Asian Turkic myths, Jupiter is called Erendiz or Erentüz, from eren (of uncertain meaning) and yultuz ("star"). The Turks calculated the period of the orbit of Jupiter as 11 years and 300 days. They believed that some social and natural events connected to Erentüz's movements on the sky. The Chinese, Vietnamese, Koreans, and Japanese called it the "wood star" (Chinese: 木星; pinyin: mùxīng), based on the Chinese Five Elements. In China it became known as the "Year-star" (Sui-sing) as Chinese astronomers noted that it jumped one zodiac constellation each year (with corrections). In some ancient Chinese writings the years were named, at least in principle, in correlation with the Jovian zodiacal signs.



 

Our Solar System: Jupiter Part I




Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth the mass of the Sun. Jupiter is the third brightest natural object in the Earth's night sky after the Moon and Venus, and it has been observed since prehistoric times. It was named after the Roman god Jupiter, the king of the gods.


Jupiter is primarily composed of hydrogen, but helium constitutes one-quarter of its mass and one-tenth of its volume. It probably has a rocky core of heavier elements, but, like the other giant planets in the Solar System, it lacks a well-defined solid surface. The ongoing contraction of Jupiter's interior generates more heat than it receives from the Sun. Because of its rapid rotation, the planet's shape is an oblate spheroid: it has a slight but noticeable bulge around the equator. The outer atmosphere is divided into a series of latitudinal bands, with turbulence and storms along their interacting boundaries. A prominent result of this is the Great Red Spot, a giant storm which has been observed since at least 1831.


Jupiter is surrounded by a faint planetary ring system and a powerful magnetosphere. Jupiter's magnetic tail is nearly 800 million km (5.3 AU; 500 million mi) long, covering nearly the entire distance to Saturn's orbit. Jupiter has 80 known moons and possibly many more, including the four large moons discovered by Galileo Galilei in 1610: Io, Europa, Ganymede, and Callisto. Io and Europa are about the size of Earth's Moon; Callisto is almost the size of the planet Mercury, and Ganymede is larger.


Pioneer 10 was the first spacecraft to visit Jupiter, making its closest approach to the planet in December 1973. Jupiter has since been explored by multiple robotic spacecraft, beginning with the Pioneer and Voyager flyby missions from 1973 to 1979, and later with the Galileo orbiter in 1995. In 2007, the New Horizons visited Jupiter using its gravity to increase its speed, bending its trajectory en route to Pluto. The latest probe to visit the planet, Juno, entered orbit around Jupiter in July 2016.[ Future targets for exploration in the Jupiter system include the probable ice-covered liquid ocean of Europa.


Name and symbol


In both the ancient Greek and Roman civilizations, Jupiter was named after the chief god of the divine pantheon: Zeus for the Greeks and Jupiter for the Romans. The International Astronomical Union (IAU) formally adopted the name Jupiter for the planet in 1976. The IAU names newly discovered satellites of Jupiter for the mythological lovers, favorites, and descendants of the god. The planetary symbol for Jupiter, ♃, descends from a Greek zeta with a horizontal stroke, ⟨Ƶ⟩, as an abbreviation for Zeus.


Jove, the archaic name of Jupiter, came into use as a poetic name for the planet around the 14th century. The Romans named the fifth day of the week diēs Iovis ("Jove's Day") after the planet Jupiter.[26] In Germanic mythology, Jupiter is equated to Thor, whence the English name Thursday for the Roman dies Jovis.


The original Greek deity Zeus supplies the root zeno-, which is used to form some Jupiter-related words, such as zenographic. Jovian is the adjectival form of Jupiter. The older adjectival form jovial, employed by astrologers in the Middle Ages, has come to mean "happy" or "merry", moods ascribed to Jupiter's astrological influence.


Formation and migration


Jupiter is believed to be the oldest planet in the Solar System. Current models of Solar System formation suggest that Jupiter formed at or beyond the snow line: a distance from the early Sun where the temperature is sufficiently cold for volatiles such as water to condense into solids. The planet began as a large solid core, then accumulated its gaseous atmosphere. As a consequence, the core must have formed before the solar nebula was fully dispersed after 10 million years. Over about a million years, Jupiter's atmosphere gradually expanded until it had 20 times the mass of the Earth. The orbiting mass created a gap in the solar nebula, and thereafter the planet slowly increased to 50 Earth masses over 3–4 million years.


According to the "grand tack hypothesis", Jupiter began to form at a distance of roughly 3.5 AU (520 million km; 330 million mi) from the Sun. As the young planet accreted mass, interaction with the gas disk orbiting the Sun and orbital resonances with Saturn caused it to migrate inward. This upset the orbits of several super-Earths orbiting closer to the Sun, causing them to collide destructively. Saturn would later have begun to migrate inwards too, much faster than Jupiter, until the two planets became captured in a 3:2 mean motion resonance at approximately 1.5 AU (220 million km; 140 million mi) from the Sun. This changed the direction of migration, causing them to migrate away from the Sun and out of the inner system to their current locations. All of this happened over a period of 3–6 million years, with the final migration of Jupiter occurring over several hundred thousand years. Jupiter's departure from the inner solar system eventually allowed the inner planets—including Earth—to form from the rubble.


There are several problems with the grand tack hypothesis. The resulting formation timescales of terrestrial planets appear to be inconsistent with the measured elemental composition. It is likely that Jupiter would have settled into an orbit much closer to the Sun if it had migrated through the solar nebula. Some competing models of Solar System formation predict the formation of Jupiter with orbital properties that are close to those of the present day planet. Other models predict Jupiter forming at distances much farther out, such as 18 AU (2.7 billion km; 1.7 billion mi).


Based on Jupiter's composition, researchers have made the case for an initial formation outside the molecular nitrogen (N2) snowline, which is estimated at 20–30 AU (3.0–4.5 billion km; 1.9–2.8 billion mi) from the Sun, and possibly even outside the argon snowline, which may be as far as 40 AU (6.0 billion km; 3.7 billion mi). Having formed at one of these extreme distances, Jupiter would then have migrated inwards to its current location. This inward migration would have occurred over a roughly 700,000-year time period, during an epoch approximately 2–3 million years after the planet began to form. In this model, Saturn, Uranus and Neptune would have formed even further out than Jupiter, and Saturn would also have migrated inwards.

Physical characteristics


Jupiter is a gas giant, being primarily composed of gas and liquid rather than solid matter. It is the largest planet in the Solar System, with a diameter of 142,984 km (88,846 mi) at its equator. The average density of Jupiter, 1.326 g/cm3, is about the same as simple syrup (syrup USP), and is lower than those of the four terrestrial planets.


Composition


Jupiter's upper atmosphere is about 90% hydrogen and 10% helium by volume. Since helium atoms are more massive than hydrogen molecules, Jupiter's atmosphere is approximately 24% helium by mass. The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds. There are also fractional amounts of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found. The interior of Jupiter contains denser materials—by mass it is roughly 71% hydrogen, 24% helium, and 5% other elements.


The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun. Helium is also reduced to about 80% of the Sun's helium composition. This depletion is a result of precipitation of these elements as helium-rich droplets, a process that happens deep in the interior of the planet.


Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more of the next most common elements, including oxygen, carbon, nitrogen, and sulfur. These planets are known as ice giants, because the majority of their volatile compounds are in solid form.


Size and mass


Jupiter's mass is 2.5 times that of all the other planets in the Solar System combined—so massive that its barycentre with the Sun lies above the Sun's surface at 1.068 solar radii from the Sun's centre. Jupiter is much larger than Earth and considerably less dense: it has 1,321 times the volume of the Earth, but only 318 times the mass.  Jupiter's radius is about one tenth the radius of the Sun, and its mass is one thousandth the mass of the Sun, as the densities of the two bodies are similar. A "Jupiter mass" (MJ or MJup) is often used as a unit to describe masses of other objects, particularly extra-solar planets and brown dwarfs. For example, the extra-solar planet HD 209458 b has a mass of 0.69 MJ, while Kappa Andromedae b has a mass of 12.8 MJ.


Theoretical models indicate that if Jupiter had over 40% more mass, the interior would be so compressed that its volume would decrease despite the increasing amount of matter. For smaller changes in its mass, the radius would not change appreciably. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved. Although Jupiter would need to be about 75 times more massive to fuse hydrogen and become a star, the smallest red dwarf may be only slightly larger in radius than Saturn.


Jupiter radiates more heat than it receives through solar radiation, due to the Kelvin–Helmholtz mechanism within its contracting interior. This process causes Jupiter to shrink by about 1 mm (0.039 in)/yr. When it formed, Jupiter was hotter and was about twice its current diameter.


Internal structure


Before the early 21st century, most scientists proposed one of two scenarios for the formation of Jupiter. If the planet accreted first as a solid body, it would consist of a dense core, a surrounding layer of liquid metallic hydrogen (with some helium) extending outward to about 80% of the radius of the planet, and an outer atmosphere consisting primarily of molecular hydrogen. Alternatively, if the planet collapsed directly from the gaseous protoplanetary disk, it was expected to completely lack a core, consisting instead of denser and denser fluid (predominantly molecular and metallic hydrogen) all the way to the centre. Data from the Juno mission showed that Jupiter has a very diffuse core that mixes into its mantle. This could have been caused by an impact from a planet of about ten Earth masses a few million years after Jupiter's formation, which would have disrupted an originally solid Jovian core. It is estimated that the core takes up 30–50% of the planet's radius, and contains heavy elements with a combined mass 7–25 times the Earth.


Outside the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above molecular hydrogen's critical pressure of 1.3 MPa and critical temperature of 33 K (−240.2 °C; −400.3 °F). In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. The hydrogen and helium gas extending downward from the cloud layer gradually transitions to a liquid in deeper layers, possibly resembling something akin to an ocean of liquid hydrogen and other supercritical fluids. Physically, the gas gradually becomes hotter and denser as depth increases.


Rain-like droplets of helium and neon precipitate downward through the lower atmosphere, depleting the abundance of these elements in the upper atmosphere. Calculations suggest that helium drops separate from metallic hydrogen at a radius of 60,000 km (37,000 mi) (11,000 km (6,800 mi) below the cloud-tops) and merge again at 50,000 km (31,000 mi) (22,000 km (14,000 mi) beneath the clouds).[82] Rainfalls of diamonds have been suggested to occur, as well as on Saturn and the ice giants Uranus and Neptune.


The temperature and pressure inside Jupiter increase steadily inward because the heat of planetary formation can only escape by convection. At a surface depth where the atmospheric pressure level is 1 bar (0.10 MPa), the temperature is around 165 K (−108 °C; −163 °F). The region of supercritical hydrogen changes gradually from a molecular fluid to a metallic fluid spans pressure ranges of 50–400 GPa with temperatures of 5,000–8,400 K (4,730–8,130 °C; 8,540–14,660 °F), respectively. The temperature of Jupiter's diluted core is estimated to be 20,000 K (19,700 °C; 35,500 °F) with a pressure of around 4,000 Gpa.


Atmosphere


The atmosphere of Jupiter extends to a depth of 3,000 km (2,000 mi) below the cloud layers.


Cloud layers


Jupiter is perpetually covered with clouds of ammonia crystals, which may contain ammonium hydro-sulfide as well. The clouds are located in the tropopause layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued zones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 100 meters per second (360 km/h; 220 mph) are common in zonal jet streams. The zones have been observed to vary in width, color and intensity from year to year, but they have remained stable enough for scientists to name them.


The cloud layer is about 50 km (31 mi) deep, and consists of at least two decks of ammonia clouds: a thin clearer region on top with a thick lower deck. There may be a thin layer of water clouds underlying the ammonia clouds, as suggested by flashes of lightning detected in the atmosphere of Jupiter. These electrical discharges can be up to a thousand times as powerful as lightning on Earth. The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior. The Juno mission revealed the presence of "shallow lightning" which originates from ammonia-water clouds relatively high in the atmosphere. These discharges carry "mush-balls" of water-ammonia slushes covered in ice, which fall deep into the atmosphere. Upper-atmospheric lightning has been observed in Jupiter's upper atmosphere, bright flashes of light that last around 1.4 milliseconds. These are known as "elves" or "sprites" and appear blue or pink due to the hydrogen.


The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons. These colorful compounds, known as chromophores, mix with the warmer clouds of the lower deck. The light-colored zones are formed when rising convection cells form crystallizing ammonia that hides the chromophores from view.


Jupiter's low axial tilt means that the poles always receive less solar radiation than the planet's equatorial region. Convection within the interior of the planet transports energy to the poles, balancing out the temperatures at the cloud layer.


Great Red Spot and other vortices


The best known feature of Jupiter is the Great Red Spot, a persistent anticyclonic storm located 22° south of the equator. It is known to have existed since at least 1831, and possibly since 1665. Images by the Hubble Space Telescope have shown as many as two "red spots" adjacent to the Great Red Spot. The storm is visible through Earth-based telescopes with an aperture of 12 cm or larger. The oval object rotates counterclockwise, with a period of about six days. The maximum altitude of this storm is about 8 km (5 mi) above the surrounding cloud-tops. The Spot's composition and the source of its red colour remain uncertain, although photo-dissociated ammonia reacting with acetylene is a likely explanation.


The Great Red Spot is larger than the Earth. Mathematical models suggest that the storm is stable and will be a permanent feature of the planet. However, it has significantly decreased in size since its discovery. Initial observations in the late 1800s showed it to be approximately 41,000 km (25,500 mi) across. By the time of the Voyager flybys in 1979, the storm had a length of 23,300 km (14,500 mi) and a width of approximately 13,000 km (8,000 mi). Hubble observations in 1995 showed it had decreased in size to 20,950 km (13,020 mi), and observations in 2009 showed the size to be 17,910 km (11,130 mi). As of 2015, the storm was measured at approximately 16,500 by 10,940 km (10,250 by 6,800 mi), and was decreasing in length by about 930 km (580 mi) per year. In October 2021, a Juno flyby mission measured the depth of the Great Red Spot, putting it at around 300–500 kilometers (190–310 mi).


Juno missions show that there are several polar cyclone groups at Jupiter's poles. The northern group contains nine cyclones, with a large one in the centre and eight others around it, while its southern counterpart also consists of a centre vortex but is surrounded by five large storms and a single smaller one. These polar structures are caused by the turbulence in Jupiter's atmosphere and can be compared with the hexagon at Saturn's north pole.


Formation of Oval BA from three white ovals


In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were formed in 1939–1940. The merged feature was named Oval BA. It has since increased in intensity and changed from white to red, giving it the nickname "Little Red Spot".


In April 2017, a "Great Cold Spot" was discovered in Jupiter's thermosphere at its north pole. This feature is 24,000 km (15,000 mi) across, 12,000 km (7,500 mi) wide, and 200 °C (360 °F) cooler than surrounding material. While this spot changes form and intensity over the short term, it has maintained its general position in the atmosphere for more than 15 years. It may be a giant vortex similar to the Great Red Spot, and appears to be quasi-stable like the vortices in Earth's thermosphere. This feature may be formed by interactions between charged particles generated from Io and the strong magnetic field of Jupiter, resulting in a redistribution of heat flow.


Magnetosphere


Jupiter's magnetic field is the strongest of any planet in the Solar System,[96] with a dipole moment of 4.170 gauss (0.4170 mT) that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from 2 gauss (0.20 mT) up to 20 gauss (2.0 mT). This field is thought to be generated by eddy currents—swirling movements of conducting materials—within the liquid metallic hydrogen core. At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the solar wind generates a bow shock. Surrounding Jupiter's magnetosphere is a magneto-pause, located at the inner edge of a magneto-sheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter's lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from the solar wind.


The volcanoes on the moon Io emit large amounts of sulfur dioxide, forming a gas torus along the moon's orbit. The gas is ionized in Jupiter's magnetosphere, producing sulfur and oxygen ions. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter's equatorial plane. The plasma in the sheet co-rotates with the planet, causing deformation of the dipole magnetic field into that of a magneto-disk. Electrons within the plasma sheet generate a strong radio signature, with short, superimposed bursts in the range of 0.6–30 MHz that are detectable from Earth with consumer-grade shortwave radio receivers. As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a cyclotron maser mechanism, and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the radio emissions from Jupiter can exceed the radio output of the Sun.


Planetary rings


Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring. These rings appear to be made of dust, while Saturn's rings are made of ice. The main ring is most likely made out of material ejected from the satellites Adrastea and Metis, which is drawn into Jupiter because of the planet's strong gravitational influence. New material is added by additional impacts. In a similar way, the moons Thebe and Amalthea are believed to produce the two distinct components of the dusty gossamer ring. There is evidence of a fourth ring that may consist of collisional debris from Amalthea that is strung along the same moon's orbit.


Orbit and rotation


Jupiter is the only planet whose barycentre with the Sun lies outside the volume of the Sun, though by only 7% of the Sun's radius. The average distance between Jupiter and the Sun is 778 million km (5.2 AU) and it completes an orbit every 11.86 years. This is approximately two-fifths the orbital period of Saturn, forming a near orbital resonance. The orbital plane of Jupiter is inclined 1.30° compared to Earth. Because the eccentricity of its orbit is 0.049, Jupiter is slightly over 75 million km nearer the Sun at perihelion than aphelion.


The axial tilt of Jupiter is relatively small, only 3.13°, so its seasons are insignificant compared to those of Earth and Mars.


Jupiter's rotation is the fastest of all the Solar System's planets, completing a rotation on its axis in slightly less than ten hours; this creates an equatorial bulge easily seen through an amateur telescope. Because Jupiter is not a solid body, its upper atmosphere undergoes differential rotation. The rotation of Jupiter's polar atmosphere is about 5 minutes longer than that of the equatorial atmosphere. The planet is an oblate spheroid, meaning that the diameter across its equator is longer than the diameter measured between its poles. On Jupiter, the equatorial diameter is 9,276 km (5,764 mi) longer than the polar diameter.


Three systems are used as frames of reference for tracking the planetary rotation, particularly when graphing the motion of atmospheric features. System I applies to latitudes from 7° N to 7° S; its period is the planet's shortest, at 9h 50m 30.0s. System II applies at latitudes north and south of these; its period is 9h 55m 40.6s. System III was defined by radio astronomers and corresponds to the rotation of the planet's magnetosphere; its period is Jupiter's official rotation.


Observation


Jupiter is usually the fourth brightest object in the sky (after the Sun, the Moon, and Venus), although at opposition Mars can appear brighter than Jupiter. Depending on Jupiter's position with respect to the Earth, it can vary in visual magnitude from as bright as −2.94 at opposition down to −1.66 during conjunction with the Sun. The mean apparent magnitude is −2.20 with a standard deviation of 0.33. The angular diameter of Jupiter likewise varies from 50.1 to 30.5 arc seconds. Favorable oppositions occur when Jupiter is passing through the perihelion of its orbit, bringing it closer to Earth. Near opposition, Jupiter will appear to go into retrograde motion for a period of about 121 days, moving backward through an angle of 9.9° before returning to pro-grade movement.


Because the orbit of Jupiter is outside that of Earth, the phase angle of Jupiter as viewed from Earth is always less than 11.5°; thus, Jupiter always appears nearly fully illuminated when viewed through Earth-based telescopes. It was only during spacecraft missions to Jupiter that crescent views of the planet were obtained. A small telescope will usually show Jupiter's four Galilean moons and the prominent cloud belts across Jupiter's atmosphere. A larger telescope with an aperture of 4–6 in (10.16–15.24 cm) will show Jupiter's Great Red Spot when it faces Earth.


History


Pre-telescopic research


Observation of Jupiter dates back to at least the Babylonian astronomers of the 7th or 8th century BC. The ancient Chinese knew Jupiter as the "Suì Star" (Suìxīng 歲星) and established their cycle of 12 earthly branches based on the approximate number of years it takes Jupiter to rotate around the Sun; the Chinese language still uses its name (simplified as ) when referring to years of age. By the 4th century BC, these observations had developed into the Chinese zodiac, and each year became associated with a Tai Sui star and god controlling the region of the heavens opposite Jupiter's position in the night sky. These beliefs survive in some Taoist religious practices and in the East Asian zodiac's twelve animals. The Chinese historian Xi Zezong has claimed that Gan De, an ancient Chinese astronomer, reported a small star "in alliance" with the planet, which may indicate a sighting of one of Jupiter's moons with the unaided eye. If true, this would predate Galileo's discovery by nearly two millennia.


A 2016 paper reports that trapezoidal rule was used by Babylonians before 50 BCE for integrating the velocity of Jupiter along the ecliptic. In his 2nd century work the Almagest, the Hellenistic astronomer Claudius Ptolemaeus constructed a geocentric planetary model based on deferents and epicycles to explain Jupiter's motion relative to Earth, giving its orbital period around Earth as 4332.38 days, or 11.86 years.

 

In Memoriam: Celebrities Lost 1804



Alexander Hamilton

Immanuel Kant

Joseph Priestley

Wolfgang von Kemplen

Princess Carolina of Parma

Phillip John Schuyler

Maria Amalia, Duchess of Parma

Peggy Shippen

Nicolas-Joseph Cugnot

Jacques Necker

Betje Wolff

Aagje Deken

Philippe Lebon

George Walton

Sultan bin Ahmad

Victor-Francois, 2nd duc de Debroglie

Charles Pichegru

George Morland

Simon McTavish

Charlotte Lennox

Giovanni Domenico Tiepolo

George Barrington

Louis-Andre de Grimaldi

Louis Antoine, Duke of Enghien

Johnathan Boucher

Johann Adam Hiller

Louis Marc Antoine de Noailles

James Tytler

Louis-Jean Desprez

Pierre Mechain

David Tannenberg

 

Happy Birthday: July 28, 2022



Sally Struthers, 75

Lori Loughlin, 58

Elizabeth Berkley, 50

Cher Lloyd, 29

Darryl Hickman, 91

Jim Davis, 77

Linda Kelsey, 76

Jonathan Edwards, 76

Simon Kirke, 73

Steve Morse, 68

Scott Pelley, 65

Marc Perlman, 61

Michael Hayden, 59

Delfeayo Marsalis, 57

Afroman, 48

Todd Anderson, 47

Jacoby Shaddix, 46

John David Washington, 38

Jon Michael Hall, 37

Dustin Millegan, 32

Soulja Boy, 32

Beatrix Potter (July 28, 1866-December 2, 1943)

Marcel Duchamp (July 28, 1887-October 2, 1968)

Earl S. Tupper (July 28, 1907-October 5, 1983)

Jacqueline Bouvier Kennedy Onassis, former 1st Lady (July 28, 1929-May 19, 1994)

Georgia Engel (July 28, 1948-April 12, 2019)

 

Wednesday, July 27, 2022

In Memoriam: Celebrities Lost 1805



Horatio Nelson

Friedrich Schiller

Luigi Boccherrini

Dheeran Chinnamalai

Frederick Hereditary, Prince of Denmark

Manuel Maria Barbosa du Bocage

Nikolas-Jacques Conte

Charles Cornwallis, 1st Marquess Cornwallis

Christopher Anstey

John Almon

William Paley

Aloys I, Prince of Liechtenstein

Saverio Cassar

Ferdinand von Hompesch zu Bolheim

Frederica Louisa of Hesse-Darmstadt

John Beresford

William Moultrie

Claude Chappe

Christopher Gadsden

William Petty, 2nd Earl of Shelburne

Jean-Baptiste Grueze

Francois-Ferdinand Christophe

Isabelle de  Charriere

Abraham Hyacinthe Anquetil-DuPerron

Josephus Nicolaus Laurenti

Maria Theresa of Savoy

Ann Griffiths

Mihaly Csokonai Vitez

Inthavong

Thalakkal Chanthu

Stanislaw Szczesny Potocki

 

Happy Birthday: July 27, 2022



Norman Lear, 100

Julian McMahon, 54

Triple H, 53

Nikolaj Coster-Waldau, 52

Maya Rudolph, 50

Taylor Schilling, 38

John Pleshette, 80

Betty Thomas, 75

Maureen McGovern, 73

Roxanne Hart, 68

Duncan Cameron, 66

Carol Leifer, 66

Bill Engvall, 65

Karrin Allyson, 60

Stacy Dean Campbell, 55

Julianna Hatfield, 55

Eric Martsolf, 51

Abe Cunningham, 49

Pete Yorn, 48

Seamus Dever, 46

Jonathan Rhys Meyer, 45

Martha Madison, 45

Heidi Gardner, 39

Cheyenne Kimball, 32

Alyvia Alyn Lind, 15

Henry Joseph Samiri, 9

Peggy Fleming Jenkins, 74

Yahoo Serious, 69

Christopher Dean, 64

Ludovico Sforza (July 27, 1452-May 27, 1508)

Jerry Van Dyke (July 27, 1931-January 5, 2018)

 

In Memoriam: Celebrities Lost 1806



Benjamin Banneker

John Graves Simcoe

Jean-Jacques Dessalines

Mungo Park

Charles Augustino de Couloma

Henry Knox

William Pitt the Younger

Shah Alam II

Horatio Gates

William V, Prince of Orange

Michael Haydn

Robert Morris

Jean-Honore Fragonard

George Wythe

Charles Lennox, 3rd Duke of Richmond

Princess Maria Antonia of Naples and Sicily

Charles William Ferdinand, Duke of Brunswick

Claude Nicolas Ledoux

Timothy Dexter

Carlo Gozzi

Elizabeth Carter

Fra Diavolo

Jayi Rajaguru

Isaac Backus

Pierre-Charles Villeneuve

George Macartney, 1st Earl Macartney

Utamaro

Robert Gray

Charles James Fox

Jose Clavijo y Fajardo

John Breckinridge

Charlotte Smith

 

Happy Birthday: July 26, 2022



Mick Jagger, 79

Helen Mirren, 76

Sandra Bullock, 58

Jeremy Piven 57

Jason Statham, 55

Kate Beckinsale, 49

Monica Raymund, 36

Robert Colbert, 91

Darlene Love, 81

Brenton Wood, 81

Roger Taylor, 73

Susan George, 72

Nana Visitor, 65

Kevin Spacey, 63

Gary Cherone, 61

Jim Lindberg, 57

Wayne Wonder, 56

Cress Williams, 52

Chris Harrison, 51

Gary Owen, 49

Dan Konopka, 48

Rebecca St. James, 45

Eve Myles, 44

Juliet Rylance, 43

Francia Raisa, 34

Jamie Sharpe, 33

Bianca Santos, 32

Taylor Momsen, 29

Dorothy Hamil, 66

George Bernard Shaw (July 26, 1856-November 2, 1950)

Carl Jung (July 26, 1875-June 6, 1961)

Aldous Huxley (July 26, 1894-November 22, 1963)

Jan Berenstain (July 26, 1923-February 24, 2012)

Stanley Kubrick (July 26, 1926-March 7, 1999)

 

Maryland Urban Legends on TPKs Stories

https://anchor.fm/valerie-harvey/episodes/Maryland-Urban-Legends-e1lp012 

 

Tuesday, July 26, 2022

Our Solar System: Mars Part II

 




Volcanoes


The shield volcano Olympus Mons (Mount Olympus) is an extinct volcano in the vast upland region Tharsis, which contains several other large volcanoes. The edifice is over 600 km (370 mi) wide. Because the mountain is so large, with complex structure at its edges, allocating a height to it is difficult. Its local relief, from the foot of the cliffs which form its northwest margin to its peak, is over 21 km (13 mi), a little over twice the height of Mauna Kea as measured from its base on the ocean floor. The total elevation change from the plains of Amazonis Planitia, over 1,000 km (620 mi) to the northwest, to the summit approaches 26 km (16 mi), roughly three times the height of Mount Everest, which in comparison stands at just over 8.8 kilometers (5.5 mi). Consequently, Olympus Mons is either the tallest or second-tallest mountain in the Solar System; the only known mountain which might be taller is the Rheasilvia peak on the asteroid Vesta, at 20–25 km (12–16 mi).


Impact topography


The dichotomy of Martian topography is striking: northern plains flattened by lava flows contrast with the southern highlands, pitted and cratered by ancient impacts. It is possible that, four billion years ago, the Northern Hemisphere of Mars was struck by an object one-tenth to two-thirds the size of Earth's Moon. If this is the case, the Northern Hemisphere of Mars would be the site of an impact crater 10,600 by 8,500 kilometers (6,600 by 5,300 mi) in size, or roughly the area of Europe, Asia, and Australia combined, surpassing Utopia Planitia and the Moon's South Pole–Aitken basin as the largest impact crater in the Solar System.


Mars is scarred by a number of impact craters: a total of 43,000 craters with a diameter of 5 kilometers (3.1 mi) or greater have been found. The largest exposed crater is Hellas, which is 2,300 kilometers (1,400 mi) wide and 7,000 meters (23,000 ft) deep, and is a light albedo feature clearly visible from Earth. There are other notable impact features, such as Argyre, which is around 1,800 kilometers (1,100 mi) in diameter, and Isidis, which is around 1,500 kilometers (930 mi) in diameter. Due to the smaller mass and size of Mars, the probability of an object colliding with the planet is about half that of Earth. Mars is located closer to the asteroid belt, so it has an increased chance of being struck by materials from that source. Mars is more likely to be struck by short-period comets, i.e., those that lie within the orbit of Jupiter.


Martian craters can have a morphology that suggests the ground became wet after the meteor impacted.


Tectonic sites


The large canyon, Valles Marineris (Latin for "Mariner Valleys", also known as Agathodaemon in the old canal maps), has a length of 4,000 kilometers (2,500 mi) and a depth of up to 7 kilometers (4.3 mi). The length of Valles Marineris is equivalent to the length of Europe and extends across one-fifth the circumference of Mars. By comparison, the Grand Canyon on Earth is only 446 kilometers (277 mi) long and nearly 2 kilometers (1.2 mi) deep. Valles Marineris was formed due to the swelling of the Tharsis area, which caused the crust in the area of Valles Marineris to collapse. In 2012, it was proposed that Valles Marineris is not just a graben, but a plate boundary where 150 kilometers (93 mi) of transverse motion has occurred, making Mars a planet with possibly a two-tectonic plate arrangement.


Holes


Images from the Thermal Emission Imaging System (THEMIS) aboard NASA's Mars Odyssey orbiter have revealed seven possible cave entrances on the flanks of the volcano Arsia Mons. The caves, named after loved ones of their discoverers, are collectively known as the "seven sisters". Cave entrances measure from 100 to 252 meters (328 to 827 ft) wide and they are estimated to be at least 73 to 96 meters (240 to 315 ft) deep. Because light does not reach the floor of most of the caves, it is possible that they extend much deeper than these lower estimates and widen below the surface. "Dena" is the only exception; its floor is visible and was measured to be 130 metres (430 ft) deep. The interiors of these caverns may be protected from micrometeoroids, UV radiation, solar flares and high energy particles that bombard the planet's surface.


Atmosphere


Mars lost its magnetosphere 4 billion years ago, possibly because of numerous asteroid strikes, so the solar wind interacts directly with the Martian ionosphere, lowering the atmospheric density by stripping away atoms from the outer layer. Both Mars Global Surveyor and Mars Express have detected ionized atmospheric particles trailing off into space behind Mars, and this atmospheric loss is being studied by the MAVEN orbiter. Compared to Earth, the atmosphere of Mars is quite rarefied. Atmospheric pressure on the surface today ranges from a low of 30 Pa (0.0044 psi) on Olympus Mons to over 1,155 Pa (0.1675 psi) in Hellas Planitia, with a mean pressure at the surface level of 600 Pa (0.087 psi). The highest atmospheric density on Mars is equal to that found 35 kilometers (22 mi) above Earth's surface. The resulting mean surface pressure is only 0.6% of that of Earth 101.3 kPa (14.69 psi). The scale height of the atmosphere is about 10.8 kilometers (6.7 mi), which is higher than Earth's 6 kilometers (3.7 mi), because the surface gravity of Mars is only about 38% of Earth's.


The atmosphere of Mars consists of about 96% carbon dioxide, 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. The atmosphere is quite dusty, containing particulates about 1.5 µm in diameter which give the Martian sky a tawny color when seen from the surface. It may take on a pink hue due to iron oxide particles suspended in it. The concentration of methane in the Martian atmosphere fluctuates from about 0.24 ppb during the northern winter to about 0.65 ppb during the summer. Estimates of its lifetime range from 0.6 to 4 years, so its presence indicates that an active source of the gas must be present. Methane could be produced by non-biological process such as serpentinization involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars, or by Martian life.


Compared to Earth, its higher concentration of atmospheric CO2 and lower surface pressure may be why sound is attenuated more on Mars, where natural sources are rare apart from the wind. Using acoustic recordings collected by the Perseverance rover, researchers concluded that the speed of sound there is approximately 240 m/s for frequencies below 240 Hz, and 250 m/s for those above.


Auroras have been detected on Mars. Because Mars lacks a global magnetic field, the types and distribution of auroras there differ from those on Earth; rather than being mostly restricted to polar regions, a Martian aurora can encompass the planet. In September 2017, NASA reported radiation levels on the surface of the planet Mars were temporarily doubled, and were associated with an aurora 25 times brighter than any observed earlier, due to a massive, and unexpected, solar storm in the middle of the month.


Climate


Of all the planets in the Solar System, the seasons of Mars are the most Earth-like, due to the similar tilts of the two planets' rotational axes. The lengths of the Martian seasons are about twice those of Earth's because Mars's greater distance from the Sun leads to the Martian year being about two Earth years long. Martian surface temperatures vary from lows of about −110 °C (−166 °F) to highs of up to 35 °C (95 °F) in equatorial summer. The wide range in temperatures is due to the thin atmosphere which cannot store much solar heat, the low atmospheric pressure, and the low thermal inertia of Martian soil. The planet is 1.52 times as far from the Sun as Earth, resulting in just 43% of the amount of sunlight.


If Mars had an Earth-like orbit, its seasons would be similar to Earth's because its axial tilt is similar to Earth's. The comparatively large eccentricity of the Martian orbit has a significant effect. Mars is near perihelion when it is summer in the Southern Hemisphere and winter in the north, and near aphelion when it is winter in the Southern Hemisphere and summer in the north. As a result, the seasons in the Southern Hemisphere are more extreme and the seasons in the northern are milder than would otherwise be the case. The summer temperatures in the south can be warmer than the equivalent summer temperatures in the north by up to 30 °C (54 °F).


Mars has the largest dust storms in the Solar System, reaching speeds of over 160 km/h (100 mph). These can vary from a storm over a small area, to gigantic storms that cover the entire planet. They tend to occur when Mars is closest to the Sun, and have been shown to increase the global temperature.


Dust storms on Mars


Orbit and rotation


Mars's average distance from the Sun is roughly 230 million km (143 million mi), and its orbital period is 687 (Earth) days. The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours.


The axial tilt of Mars is 25.19° relative to its orbital plane, which is similar to the axial tilt of Earth. As a result, Mars has seasons like Earth, though on Mars they are nearly twice as long because its orbital period is that much longer. In the present day epoch, the orientation of the north pole of Mars is close to the star Deneb.


Mars has a relatively pronounced orbital eccentricity of about 0.09; of the seven other planets in the Solar System, only Mercury has a larger orbital eccentricity. It is known that in the past, Mars has had a much more circular orbit. At one point, 1.35 million Earth years ago, Mars had an eccentricity of roughly 0.002, much less than that of Earth today. Mars's cycle of eccentricity is 96,000 Earth years compared to Earth's cycle of 100,000 years.


Habitability and search for life


During the late nineteenth century, it was widely accepted in the astronomical community that Mars had life-supporting qualities, including oxygen and water. However, in 1894 W. W. Campbell at Lick Observatory observed the planet and found that "if water vapor or oxygen occur in the atmosphere of Mars it is in quantities too small to be detected by spectroscopes then available". That observation contradicted many of the measurements of the time and was not widely accepted. Campbell and V. M. Slipher repeated the study in 1909 using better instruments, but with the same results. It wasn't until the findings were confirmed by W. S. Adams in 1925 that the myth of the Earth-like habitability of Mars was finally broken. However, even in the 1960s, articles were published on Martian biology, putting aside explanations other than life for the seasonal changes on Mars. Detailed scenarios for the metabolism and chemical cycles for a functional ecosystem were being published as late as 1962.


The current understanding of planetary habitability – the ability of a world to develop environmental conditions favorable to the emergence of life – favors planets that have liquid water on their surface. Most often this requires the orbit of a planet to lie within the habitable zone, which for the Sun is estimated to extend from within the orbit of Earth to about that of Mars. During perihelion, Mars dips inside this region, but Mars's thin (low-pressure) atmosphere prevents liquid water from existing over large regions for extended periods. The past flow of liquid water demonstrates the planet's potential for habitability. Recent evidence has suggested that any water on the Martian surface may have been too salty and acidic to support regular terrestrial life.


The lack of a magnetosphere and the extremely thin atmosphere of Mars are a challenge: the planet has little heat transfer across its surface, poor insulation against bombardment of the solar wind and insufficient atmospheric pressure to retain water in a liquid form (water instead sublimes to a gaseous state). Mars is nearly, or perhaps totally, geologically dead; the end of volcanic activity has apparently stopped the recycling of chemicals and minerals between the surface and interior of the planet.


Scoop of Mars soil by Curiosity, October 2012


In situ investigations have been performed on Mars by the Viking landers, Spirit and Opportunity rovers, Phoenix lander, and Curiosity rover. Evidence suggests that the planet was once significantly more habitable than it is today, but whether living organisms ever existed there remains unknown. The Viking probes of the mid-1970s carried experiments designed to detect microorganisms in Martian soil at their respective landing sites and had positive results, including a temporary increase of CO2 production on exposure to water and nutrients. This sign of life was later disputed by scientists, resulting in a continuing debate, with NASA scientist Gilbert Levin asserting that Viking may have found life. Tests conducted by the Phoenix Mars lander have shown that the soil has an alkaline pH and it contains magnesium, sodium, potassium and chloride. The soil nutrients may be able to support life, but life would still have to be shielded from the intense ultraviolet light. A 2014 analysis of Martian meteorite EETA79001 found chlorate, perchlorate, and nitrate ions in sufficiently high concentration to suggest that they are widespread on Mars. UV and X-ray radiation would turn chlorate and perchlorate ions into other, highly reactive oxychlorines, indicating that any organic molecules would have to be buried under the surface to survive.


Scientists have proposed that carbonate globules found in meteorite ALH84001, which is thought to have originated from Mars, could be fossilized microbes extant on Mars when the meteorite was blasted from the Martian surface by a meteor strike some 15 million years ago. This proposal has been met with skepticism, and an exclusively inorganic origin for the shapes has been proposed. Small quantities of methane and formaldehyde detected by Mars orbiters are both claimed to be possible evidence for life, as these chemical compounds would quickly break down in the Martian atmosphere. Alternatively, these compounds may instead be replenished by volcanic or other geological means, such as serpentinite. Impact glass, formed by the impact of meteors, which on Earth can preserve signs of life, has also been found on the surface of the impact craters on Mars. Likewise, the glass in impact craters on Mars could have preserved signs of life, if life existed at the site.


Moons


Mars has two relatively small (compared to Earth's) natural moons, Phobos (about 22 kilometers (14 mi) in diameter) and Deimos (about 12 kilometers (7.5 mi) in diameter), which orbit close to the planet. Asteroid capture is a long-favored theory, but their origin remains uncertain. Both satellites were discovered in 1877 by Asaph Hall; they are named after the characters Phobos (panic/fear) and Deimos (terror/dread), who, in Greek mythology, accompanied their father Ares, god of war, into battle. Mars was the Roman equivalent to Ares. In modern Greek, the planet retains its ancient name Ares (Aris: Άρης).


From the surface of Mars, the motions of Phobos and Deimos appear different from that of the Moon. Phobos rises in the west, sets in the east, and rises again in just 11 hours. Deimos, being only just outside synchronous orbit – where the orbital period would match the planet's period of rotation – rises as expected in the east but slowly.


Because the orbit of Phobos is below synchronous altitude, the tidal forces from the planet Mars are gradually lowering its orbit. In about 50 million years, it could either crash into Mars's surface or break up into a ring structure around the planet.


The origin of the two moons is not well understood. Their low albedo and carbonaceous chondrite composition have been regarded as similar to asteroids, supporting the capture theory. The unstable orbit of Phobos would seem to point towards a relatively recent capture. But both have circular orbits, near the equator, which is unusual for captured objects and the required capture dynamics are complex. Accretion early in the history of Mars is plausible, but would not account for a composition resembling asteroids rather than Mars itself, if that is confirmed.


A third possibility is the involvement of a third body or a type of impact disruption. More-recent lines of evidence for Phobos having a highly porous interior, and suggesting a composition containing mainly phyllosilicates and other minerals known from Mars, point toward an origin of Phobos from material ejected by an impact on Mars that reaccreted in Martian orbit, similar to the prevailing theory for the origin of Earth's moon. Although the visible and near-infrared (VNIR) spectra of the moons of Mars resemble those of outer-belt asteroids, the thermal infrared spectra of Phobos are reported to be inconsistent with chondrites of any class. It is also possible that Phobos and Deimos are fragments of an older moon, formed by debris from a large impact on Mars, and then destroyed by a more recent impact upon itself.


Mars may have moons smaller than 50 to 100 metres (160 to 330 ft) in diameter, and a dust ring is predicted to exist between Phobos and Deimos.


Exploration


Dozens of crewless spacecraft, including orbiters, landers, and rovers, have been sent to Mars by the Soviet Union, the United States, Europe, India, the United Arab Emirates, and China to study the planet's surface, climate, and geology. NASA's Mariner 4 was the first spacecraft to visit Mars; launched on 28 November 1964, it made its closest approach to the planet on 15 July 1965. Mariner 4 detected the weak Martian radiation belt, measured at about 0.1% that of Earth, and captured the first images of another planet from deep space.


Once spacecraft visited the planet during NASA's Mariner missions in the 1960s and 1970s, many previous concepts of Mars were radically broken. After the results of the Viking life-detection experiments, the hypothesis of a hostile, dead planet was generally accepted. The data from Mariner 9 and Viking allowed better maps of Mars to be made, and the Mars Global Surveyor mission, which launched in 1996 and operated until late 2006, produced complete, extremely detailed maps of the Martian topography, magnetic field and surface minerals. These maps are available online at websites including Google Mars. Both the Mars Reconnaissance Orbiter and Mars Express continued exploring with new instruments and supporting lander missions. NASA provides two online tools: Mars Trek, which provides visualizations of the planet using data from 50 years of exploration, and Experience Curiosity, which simulates traveling on Mars in 3-D with Curiosity.


As of 2021, Mars is host to fourteen functioning spacecraft. Eight are in orbit: 2001 Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, MAVEN, Mars Orbiter Mission, ExoMars Trace Gas Orbiter, the Hope orbiter, and the Tianwen-1 orbiter. Another six are on the surface: the InSight lander, the Mars Science Laboratory Curiosity rover, the Perseverance rover, the Ingenuity helicopter, the Tianwen-1 lander, and the Zhurong rover.


The Rosalind Franklin rover mission, designed to search for evidence of past life, was intended to be launched in 2018 but has been repeatedly delayed, with a launch date pushed to 2024 at the earliest. The current concept for the Mars sample-return mission would launch in 2026 and feature hardware built by NASA and ESA. Several plans for a human mission to Mars have been proposed throughout the 20th and 21st centuries, but none have come to fruition. The NASA Authorization Act of 2017 directed NASA to study the feasibility of a crewed Mars mission in the early 2030s; the resulting report eventually concluded that this would be unfeasible. In addition, in 2021, China was planning to send a crewed Mars mission in 2033.


Astronomy on Mars


With the presence of various orbiters, landers, and rovers, it is possible to practice astronomy from Mars. Although Mars's moon Phobos appears about one-third the angular diameter of the full moon on Earth, Deimos appears more or less star-like, looking only slightly brighter than Venus does from Earth.


Various phenomena seen from Earth have also been observed from Mars, such as meteors and auroras. The apparent sizes of the moons Phobos and Deimos are sufficiently smaller than that of the Sun; thus, their partial "eclipses" of the Sun are best considered transits. Transits of Mercury and Venus have been observed from Mars. A transit of Earth will be seen from Mars on 10 November 2084.


Viewing


The mean apparent magnitude of Mars is +0.71 with a standard deviation of 1.05. Because the orbit of Mars is eccentric, the magnitude at opposition from the Sun can range from about −3.0 to −1.4. The minimum brightness is magnitude +1.86 when the planet is near aphelion and in conjunction with the Sun. At its brightest, Mars (along with Jupiter) is second only to Venus in luminosity. Mars usually appears distinctly yellow, orange, or red. When farthest away from Earth, it is more than seven times farther away than when it is closest. Mars is usually close enough for particularly good viewing once or twice at 15-year or 17-year intervals. As Mars approaches opposition, it begins a period of retrograde motion, which means it will appear to move backwards in a looping curve with respect to the background stars. This retrograde motion lasts for about 72 days, and Mars reaches its peak luminosity in the middle of this interval.


The point at which Mars's geocentric longitude is 180° different from the Sun's is known as opposition, which is near the time of closest approach to Earth. The time of opposition can occur as much as 8.5 days away from the closest approach. The distance at close approach varies between about 54 and 103 million km (34 and 64 million mi) due to the planets' elliptical orbits, which causes comparable variation in angular size. The most recent Mars opposition occurred on 13 October 2020, at a distance of about 63 million km (39 million mi). The average time between the successive oppositions of Mars, its synodic period, is 780 days; but the number of days between the dates of successive oppositions can range from 764 to 812.


Mars comes into opposition from Earth every 2.1 years. The planets come into opposition near Mars's perihelion in 2003, 2018 and 2035, with the 2020 and 2033 events being particularly close to perihelic opposition. Mars made its closest approach to Earth and maximum apparent brightness in nearly 60,000 years, 55,758,006 km (0.37271925 AU; 34,646,419 mi), magnitude −2.88, on 27 August 2003, at 09:51:13 UTC. This occurred when Mars was one day from opposition and about three days from its perihelion, making it particularly easy to see from Earth. The last time it came so close is estimated to have been on 12 September 57,617 BC, the next time being in 2287. This record approach was only slightly closer than other recent close approaches.


Optical ground-based telescopes are typically limited to resolving features about 300 kilometers (190 mi) across when Earth and Mars are closest because of Earth's atmosphere.


In culture


Mars is named after the Roman god of war. This association between Mars and war dates back at least to Babylonian astronomy, in which the planet was named for the god Nergal, deity of war and destruction. It persisted into modern times, as exemplified by Gustav Holst's orchestral suite The Planets, whose famous first movement labels Mars "the bringer of war". The planet's symbol, a circle with a spear pointing out to the upper right, is also used as a symbol for the male gender. The symbol dates from at latest the 11th century, though a possible predecessor has been found in the Greek Oxyrhynchus Papyri.


The idea that Mars was populated by intelligent Martians became widespread in the late 19th century. Schiaparelli's "canali" observations combined with Percival Lowell's books on the subject put forward the standard notion of a planet that was a drying, cooling, dying world with ancient civilizations constructing irrigation works. Many other observations and proclamations by notable personalities added to what has been termed "Mars Fever". High-resolution mapping of the surface of Mars revealed no artifacts of habitation, but pseudoscientific speculation about intelligent life on Mars still continues. Reminiscent of the canali observations, these speculations are based on small scale features perceived in the spacecraft images, such as "pyramids" and the "Face on Mars". In his book Cosmos, planetary astronomer Carl Sagan wrote: "Mars has become a kind of mythic arena onto which we have projected our Earthly hopes and fears."


The depiction of Mars in fiction has been stimulated by its dramatic red color and by nineteenth-century scientific speculations that its surface conditions might support not just life but intelligent life. This gave way to many science fiction stories involving these concepts, such as H. G. Wells' The War of the Worlds, in which Martians seek to escape their dying planet by invading Earth, Ray Bradbury's The Martian Chronicles, in which human explorers accidentally destroy a Martian civilization, as well as Edgar Rice Burroughs' Barsoom series, C. S. Lewis' novel Out of the Silent Planet (1938), and a number of Robert A. Heinlein stories before the mid-sixties. Since then, depictions of Martians have also extended to animation. A comic figure of an intelligent Martian, Marvin the Martian, appeared in Haredevil Hare (1948) as a character in the Looney Tunes animated cartoons of Warner Brothers, and has continued as part of popular culture to the present. After the Mariner and Viking spacecraft had returned pictures of Mars as it really is, a lifeless and canal-less world, these ideas about Mars were abandoned; for many science-fiction authors, the new discoveries initially seemed like a constraint, but eventually the post-Viking knowledge of Mars became itself a source of inspiration for works like Kim Stanley Robinson's Mars trilogy.